国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Big Data Business Intelligence for Criminal Intelligence Analysis培訓

 
   班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
       每期人數限3到5人。
   上課時間和地點
開課地址:【上海】同濟大學(滬西)/新城金郡商務樓(11號線白銀路站)【深圳分部】:電影大廈(地鐵一號線大劇院站) 【武漢分部】:佳源大廈【成都分部】:領館區1號【沈陽分部】:沈陽理工大學【鄭州分部】:錦華大廈【石家莊分部】:瑞景大廈【北京分部】:北京中山學院 【南京分部】:金港大廈
最新開班 (連續班 、周末班、晚班):2020年3月16日
   實驗設備
     ☆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質量保障

        1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
        3、培訓合格學員可享受免費推薦就業機會。

課程大綱
 

Day 01
=====
Overview of Big Data Business Intelligence for Criminal Intelligence Analysis

Case Studies from Law Enforcement - Predictive Policing
Big Data adoption rate in Law Enforcement Agencies and how they are aligning their future operation around Big Data Predictive Analytics
Emerging technology solutions such as gunshot sensors, surveillance video and social media
Using Big Data technology to mitigate information overload
Interfacing Big Data with Legacy data
Basic understanding of enabling technologies in predictive analytics
Data Integration & Dashboard visualization
Fraud management
Business Rules and Fraud detection
Threat detection and profiling
Cost benefit analysis for Big Data implementation
Introduction to Big Data

Main characteristics of Big Data -- Volume, Variety, Velocity and Veracity.
MPP (Massively Parallel Processing) architecture
Data Warehouses – static schema, slowly evolving dataset
MPP Databases: Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Apache Spark for stream processing
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issues in Big Data

RDBMS – static structure/schema, does not promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Hadoop

When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – difficult to carry out using traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS

MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
=====
Day 02
=====
Big Data Ecosystem -- Building Big Data ETL (Extract, Transform, Load) -- Which Big Data Tools to use and when?

Hadoop vs. Other NoSQL solutions
For interactive, random access to data
Hbase (column oriented database) on top of Hadoop
Random access to data but restrictions imposed (max 1 PB)
Not good for ad-hoc analytics, good for logging, counting, time-series
Sqoop - Import from databases to Hive or HDFS (JDBC/ODBC access)
Flume – Stream data (e.g. log data) into HDFS
Big Data Management System

Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Predictive Analytics -- Fundamental Techniques and Machine Learning based Business Intelligence

Introduction to Machine Learning
Learning classification techniques
Bayesian Prediction -- preparing a training file
Support Vector Machine
KNN p-Tree Algebra & vertical mining
Neural Networks
Big Data large variable problem -- Random forest (RF)
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
Text analytic tool-Treeminer
Agile learning
Agent based learning
Distributed learning
Introduction to Open source Tools for predictive analytics : R, Python, Rapidminer, Mahut
Predictive Analytics Ecosystem and its application in Criminal Intelligence Analysis

Technology and the investigative process
Insight analytic
Visualization analytics
Structured predictive analytics
Unstructured predictive analytics
Threat/fraudstar/vendor profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery – failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytics
Network analytics
Text analytics for obtaining insights from transcripts, witness statements, internet chatter, etc.
Technology assisted review
Fraud analytics
Real Time Analytic
=====
Day 03
=====
Real Time and Scalable Analytics Over Hadoop

Why common analytic algorithms fail in Hadoop/HDFS
Apache Hama- for Bulk Synchronous distributed computing
Apache SPARK- for cluster computing and real time analytic
CMU Graphics Lab2- Graph based asynchronous approach to distributed computing
KNN p -- Algebra based approach from Treeminer for reduced hardware cost of operation
Tools for eDiscovery and Forensics

eDiscovery over Big Data vs. Legacy data – a comparison of cost and performance
Predictive coding and Technology Assisted Review (TAR)
Live demo of vMiner for understanding how TAR enables faster discovery
Faster indexing through HDFS – Velocity of data
NLP (Natural Language processing) – open source products and techniques
eDiscovery in foreign languages -- technology for foreign language processing
Big Data BI for Cyber Security – Getting a 360-degree view, speedy data collection and threat identification

Understanding the basics of security analytics -- attack surface, security misconfiguration, host defenses
Network infrastructure / Large datapipe / Response ETL for real time analytic
Prescriptive vs predictive – Fixed rule based vs auto-discovery of threat rules from Meta data
Gathering disparate data for Criminal Intelligence Analysis

Using IoT (Internet of Things) as sensors for capturing data
Using Satellite Imagery for Domestic Surveillance
Using surveillance and image data for criminal identification
Other data gathering technologies -- drones, body cameras, GPS tagging systems and thermal imaging technology
Combining automated data retrieval with data obtained from informants, interrogation, and research
Forecasting criminal activity
=====
Day 04
=====
Fraud prevention BI from Big Data in Fraud Analytics

Basic classification of Fraud Analytics -- rules-based vs predictive analytics
Supervised vs unsupervised Machine learning for Fraud pattern detection
Business to business fraud, medical claims fraud, insurance fraud, tax evasion and money laundering
Social Media Analytics -- Intelligence gathering and analysis

How Social Media is used by criminals to organize, recruit and plan
Big Data ETL API for extracting social media data
Text, image, meta data and video
Sentiment analysis from social media feed
Contextual and non-contextual filtering of social media feed
Social Media Dashboard to integrate diverse social media
Automated profiling of social media profile
Live demo of each analytic will be given through Treeminer Tool
Big Data Analytics in image processing and video feeds

Image Storage techniques in Big Data -- Storage solution for data exceeding petabytes
LTFS (Linear Tape File System) and LTO (Linear Tape Open)
GPFS-LTFS (General Parallel File System - Linear Tape File System) -- layered storage solution for Big image data
Fundamentals of image analytics
Object recognition
Image segmentation
Motion tracking
3-D image reconstruction
Biometrics, DNA and Next Generation Identification Programs

Beyond fingerprinting and facial recognition
Speech recognition, keystroke (analyzing a users typing pattern) and CODIS (combined DNA Index System)
Beyond DNA matching: using forensic DNA phenotyping to construct a face from DNA samples
Big Data Dashboard for quick accessibility of diverse data and display :

Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based services in Govt.
Tracking system and management
=====
Day 05
=====
How to justify Big Data BI implementation within an organization:

Defining the ROI (Return on Investment) for implementing Big Data
Case studies for saving Analyst Time in collection and preparation of Data – increasing productivity
Revenue gain from lower database licensing cost
Revenue gain from location based services
Cost savings from fraud prevention
An integrated spreadsheet approach for calculating approximate expenses vs. Revenue gain/savings from Big Data implementation.
Step by Step procedure for replacing a legacy data system with a Big Data System

Big Data Migration Roadmap
What critical information is needed before architecting a Big Data system?
What are the different ways for calculating Volume, Velocity, Variety and Veracity of data
How to estimate data growth
Case studies
Review of Big Data Vendors and review of their products.

Accenture
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
Treeminer
VMware (Part of EMC)
Q/A session

 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)....................
国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
亚洲乱码国产乱码精品精可以看| 欧美日韩国产综合视频在线观看中文| 在线看日韩av| 国产精品你懂的在线欣赏| 欧美成人免费网站| 久久av一区二区| 亚洲欧美日韩综合一区| 亚洲品质自拍| 亚洲国产导航| 伊人成人在线视频| 国产一区在线看| 国产亚洲视频在线观看| 国产乱码精品一区二区三区忘忧草| 欧美粗暴jizz性欧美20| 久久夜色精品国产欧美乱| 亚洲欧美日韩成人| 亚洲欧美自拍偷拍| 午夜精品理论片| 亚洲欧美综合v| 亚洲一区二区三区激情| 亚洲一区二区免费| 亚洲综合日韩中文字幕v在线| 亚洲精品视频免费| 夜夜爽www精品| 一本久道久久久| 亚洲视频免费观看| 亚洲免费在线视频一区 二区| 亚洲一区日本| 欧美一级久久久| 久久理论片午夜琪琪电影网| 久久综合九色99| 欧美韩国在线| 国产精品免费福利| 国产一区二区欧美日韩| 一区二区在线观看视频在线观看| 极品尤物久久久av免费看| 在线观看国产日韩| 亚洲精品在线观看视频| 亚洲午夜激情在线| 久久国产精品第一页| 麻豆成人综合网| 欧美日韩国产成人在线观看| 国产精品久久久久99| 国产一区二区观看| 亚洲国产精品日韩| 亚洲一区二区三区久久| 久久国产免费| 欧美精品三级在线观看| 国产精品一级久久久| 在线日韩日本国产亚洲| 一区二区三区福利| 久久久久99精品国产片| 欧美喷潮久久久xxxxx| 国产精品入口福利| 亚洲国产一区在线| 欧美一级片一区| 欧美风情在线观看| 国产亚洲精品一区二区| 亚洲六月丁香色婷婷综合久久| 午夜精品影院| 欧美乱妇高清无乱码| 韩国一区二区在线观看| 亚洲视频欧美在线| 欧美成人a视频| 国产视频一区在线观看| 日韩亚洲欧美高清| 欧美成人日本| 精品69视频一区二区三区| 中日韩高清电影网| 欧美激情视频在线播放| 狠狠88综合久久久久综合网| 亚洲午夜一区| 欧美日韩中文字幕综合视频 | 亚洲欧美三级伦理| 欧美久久久久久久久| 狠狠v欧美v日韩v亚洲ⅴ| 亚洲欧美经典视频| 欧美午夜精品久久久久久浪潮| 亚洲国产精品黑人久久久| 久久精品一区二区国产| 国产精品亚洲欧美| 亚洲小说春色综合另类电影| 欧美电影免费观看高清完整版| 国产一区二区三区奇米久涩 | 一区二区精品| 欧美激情在线狂野欧美精品| 国内自拍亚洲| 久久精品日产第一区二区三区| 国产精品亚洲а∨天堂免在线| 一区二区不卡在线视频 午夜欧美不卡在 | 欧美91福利在线观看| 一区二区三区在线观看欧美| 欧美在线亚洲一区| 韩日成人av| 乱码第一页成人| 在线观看欧美日韩| 欧美v日韩v国产v| 在线精品国精品国产尤物884a| 久久久久国产精品一区二区| 国产在线乱码一区二区三区| 久久精品99| 在线观看日韩av| 欧美高清视频www夜色资源网| 91久久精品久久国产性色也91| 欧美wwwwww| 亚洲视频视频在线| 国产性做久久久久久| 久久久久久九九九九| 亚洲精品1区2区| 欧美日韩国产精品专区| 亚洲欧美日韩国产成人精品影院| 国产精品中文字幕欧美| 久热这里只精品99re8久| 亚洲二区三区四区| 欧美视频精品一区| 久久激情视频久久| 亚洲精品美女91| 国产精品日韩欧美一区二区| 久久免费国产精品| 99精品免费| 国产一区二区观看| 欧美日韩国产欧| 欧美一区视频在线| 亚洲精品一区久久久久久 | 亚洲一区二区三区高清| 国模私拍一区二区三区| 欧美日韩蜜桃| 久久天天躁夜夜躁狠狠躁2022| 99re6这里只有精品| 国产又爽又黄的激情精品视频| 欧美激情性爽国产精品17p| 午夜国产精品影院在线观看| 亚洲国产你懂的| 国产日韩欧美在线看| 欧美乱大交xxxxx| 久久精品一区二区三区四区| 在线视频一区观看| 亚洲国产女人aaa毛片在线| 国产精品女主播在线观看| 欧美电影专区| 久久精品视频网| 亚洲欧美日本国产专区一区| 亚洲精品美女久久久久| 狠狠综合久久| 国产欧美日韩视频一区二区| 欧美日韩三区四区| 欧美精品激情在线观看| 久久午夜视频| 久久精品系列| 性欧美暴力猛交69hd| 亚洲一区二区在线视频 | 欧美成人午夜激情在线| 欧美影院午夜播放| 亚洲欧洲99久久| 国产精品99久久99久久久二8 | 亚洲看片网站| 亚洲人成人99网站| 亚洲国产成人不卡| 在线播放视频一区| 尤物在线精品| 欲香欲色天天天综合和网| 国产一区二区三区在线免费观看| 国产精品一区二区三区久久| 国产精品久久久久久福利一牛影视| 欧美日韩亚洲一区在线观看| 欧美激情一区二区三区在线| 欧美xx视频| 欧美日本簧片| 欧美午夜精品久久久久久超碰| 欧美日韩国产限制| 欧美性猛交xxxx乱大交蜜桃| 国产精品av免费在线观看| 国产精品vip| 国产视频久久| 一区二区三区无毛| 亚洲欧洲美洲综合色网| 日韩视频在线播放| 亚洲一级二级| 久久黄色小说| 蜜臀av一级做a爰片久久| 欧美电影在线| 欧美性猛交xxxx免费看久久久 | 国产精品久久网站| 国产三级精品三级| 在线看片日韩| 99亚洲一区二区| 欧美亚洲在线| 美女福利精品视频| 欧美日韩一区二区三区免费看| 国产精品免费看片| 在线成人亚洲| 亚洲天堂第二页| 久久国产精品72免费观看| 欧美成人一品| 国产精品夜夜夜| 亚洲国产经典视频| 亚洲自拍偷拍麻豆| 嫩草成人www欧美| 国产精品色婷婷| 91久久国产综合久久|