国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Big Data Business Intelligence for Criminal Intelligence Analysis培訓

 
   班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
       每期人數限3到5人。
   上課時間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開課時間(周末班/連續班/晚班):2019年1月26日
   實驗設備
     ☆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質量保障

        1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
        3、培訓合格學員可享受免費推薦就業機會。

課程大綱
 

Day 01
=====
Overview of Big Data Business Intelligence for Criminal Intelligence Analysis

Case Studies from Law Enforcement - Predictive Policing
Big Data adoption rate in Law Enforcement Agencies and how they are aligning their future operation around Big Data Predictive Analytics
Emerging technology solutions such as gunshot sensors, surveillance video and social media
Using Big Data technology to mitigate information overload
Interfacing Big Data with Legacy data
Basic understanding of enabling technologies in predictive analytics
Data Integration & Dashboard visualization
Fraud management
Business Rules and Fraud detection
Threat detection and profiling
Cost benefit analysis for Big Data implementation
Introduction to Big Data

Main characteristics of Big Data -- Volume, Variety, Velocity and Veracity.
MPP (Massively Parallel Processing) architecture
Data Warehouses – static schema, slowly evolving dataset
MPP Databases: Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Apache Spark for stream processing
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issues in Big Data

RDBMS – static structure/schema, does not promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Hadoop

When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – difficult to carry out using traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS

MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
=====
Day 02
=====
Big Data Ecosystem -- Building Big Data ETL (Extract, Transform, Load) -- Which Big Data Tools to use and when?

Hadoop vs. Other NoSQL solutions
For interactive, random access to data
Hbase (column oriented database) on top of Hadoop
Random access to data but restrictions imposed (max 1 PB)
Not good for ad-hoc analytics, good for logging, counting, time-series
Sqoop - Import from databases to Hive or HDFS (JDBC/ODBC access)
Flume – Stream data (e.g. log data) into HDFS
Big Data Management System

Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Predictive Analytics -- Fundamental Techniques and Machine Learning based Business Intelligence

Introduction to Machine Learning
Learning classification techniques
Bayesian Prediction -- preparing a training file
Support Vector Machine
KNN p-Tree Algebra & vertical mining
Neural Networks
Big Data large variable problem -- Random forest (RF)
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
Text analytic tool-Treeminer
Agile learning
Agent based learning
Distributed learning
Introduction to Open source Tools for predictive analytics : R, Python, Rapidminer, Mahut
Predictive Analytics Ecosystem and its application in Criminal Intelligence Analysis

Technology and the investigative process
Insight analytic
Visualization analytics
Structured predictive analytics
Unstructured predictive analytics
Threat/fraudstar/vendor profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery – failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytics
Network analytics
Text analytics for obtaining insights from transcripts, witness statements, internet chatter, etc.
Technology assisted review
Fraud analytics
Real Time Analytic
=====
Day 03
=====
Real Time and Scalable Analytics Over Hadoop

Why common analytic algorithms fail in Hadoop/HDFS
Apache Hama- for Bulk Synchronous distributed computing
Apache SPARK- for cluster computing and real time analytic
CMU Graphics Lab2- Graph based asynchronous approach to distributed computing
KNN p -- Algebra based approach from Treeminer for reduced hardware cost of operation
Tools for eDiscovery and Forensics

eDiscovery over Big Data vs. Legacy data – a comparison of cost and performance
Predictive coding and Technology Assisted Review (TAR)
Live demo of vMiner for understanding how TAR enables faster discovery
Faster indexing through HDFS – Velocity of data
NLP (Natural Language processing) – open source products and techniques
eDiscovery in foreign languages -- technology for foreign language processing
Big Data BI for Cyber Security – Getting a 360-degree view, speedy data collection and threat identification

Understanding the basics of security analytics -- attack surface, security misconfiguration, host defenses
Network infrastructure / Large datapipe / Response ETL for real time analytic
Prescriptive vs predictive – Fixed rule based vs auto-discovery of threat rules from Meta data
Gathering disparate data for Criminal Intelligence Analysis

Using IoT (Internet of Things) as sensors for capturing data
Using Satellite Imagery for Domestic Surveillance
Using surveillance and image data for criminal identification
Other data gathering technologies -- drones, body cameras, GPS tagging systems and thermal imaging technology
Combining automated data retrieval with data obtained from informants, interrogation, and research
Forecasting criminal activity
=====
Day 04
=====
Fraud prevention BI from Big Data in Fraud Analytics

Basic classification of Fraud Analytics -- rules-based vs predictive analytics
Supervised vs unsupervised Machine learning for Fraud pattern detection
Business to business fraud, medical claims fraud, insurance fraud, tax evasion and money laundering
Social Media Analytics -- Intelligence gathering and analysis

How Social Media is used by criminals to organize, recruit and plan
Big Data ETL API for extracting social media data
Text, image, meta data and video
Sentiment analysis from social media feed
Contextual and non-contextual filtering of social media feed
Social Media Dashboard to integrate diverse social media
Automated profiling of social media profile
Live demo of each analytic will be given through Treeminer Tool
Big Data Analytics in image processing and video feeds

Image Storage techniques in Big Data -- Storage solution for data exceeding petabytes
LTFS (Linear Tape File System) and LTO (Linear Tape Open)
GPFS-LTFS (General Parallel File System - Linear Tape File System) -- layered storage solution for Big image data
Fundamentals of image analytics
Object recognition
Image segmentation
Motion tracking
3-D image reconstruction
Biometrics, DNA and Next Generation Identification Programs

Beyond fingerprinting and facial recognition
Speech recognition, keystroke (analyzing a users typing pattern) and CODIS (combined DNA Index System)
Beyond DNA matching: using forensic DNA phenotyping to construct a face from DNA samples
Big Data Dashboard for quick accessibility of diverse data and display :

Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based services in Govt.
Tracking system and management
=====
Day 05
=====
How to justify Big Data BI implementation within an organization:

Defining the ROI (Return on Investment) for implementing Big Data
Case studies for saving Analyst Time in collection and preparation of Data – increasing productivity
Revenue gain from lower database licensing cost
Revenue gain from location based services
Cost savings from fraud prevention
An integrated spreadsheet approach for calculating approximate expenses vs. Revenue gain/savings from Big Data implementation.
Step by Step procedure for replacing a legacy data system with a Big Data System

Big Data Migration Roadmap
What critical information is needed before architecting a Big Data system?
What are the different ways for calculating Volume, Velocity, Variety and Veracity of data
How to estimate data growth
Case studies
Review of Big Data Vendors and review of their products.

Accenture
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
Treeminer
VMware (Part of EMC)
Q/A session

 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
欧美电影免费观看| 精品999在线播放| 久久精品一区二区三区不卡| 136国产福利精品导航网址| 欧美亚洲第一区| 久久午夜电影| 久久精品最新地址| 亚洲视频播放| 亚洲狼人综合| 亚洲国产日韩精品| 狠狠色综合一区二区| 国产精品推荐精品| 欧美日韩一区三区四区| 欧美电影在线| 欧美成人官网二区| 免费亚洲一区二区| 裸体丰满少妇做受久久99精品| 欧美一区二区久久久| 亚洲视频免费观看| 亚洲淫性视频| 亚洲一区日本| 午夜欧美电影在线观看| 亚洲欧美不卡| 欧美怡红院视频一区二区三区| 午夜欧美电影在线观看| 欧美一区二区在线免费播放| 亚洲欧美日韩视频一区| 西瓜成人精品人成网站| 欧美一区二区在线免费播放| 欧美自拍偷拍午夜视频| 欧美在线不卡| 久久影视三级福利片| 美女在线一区二区| 欧美精品在线视频| 欧美色网在线| 国产午夜精品久久久久久免费视| 国产欧美一区二区色老头| 国产亚洲美州欧州综合国| 韩国成人理伦片免费播放| 在线观看欧美一区| 99在线精品免费视频九九视| 亚洲伊人一本大道中文字幕| 欧美在线看片| 免费观看亚洲视频大全| 欧美日韩在线大尺度| 国产精品视频观看| 在线欧美一区| 中日韩美女免费视频网站在线观看| 亚洲校园激情| 久久综合图片| 欧美午夜精品理论片a级大开眼界| 国产精品日日摸夜夜添夜夜av| 国产欧美日韩综合一区在线观看 | 国产精品任我爽爆在线播放| 黄色成人免费观看| 亚洲肉体裸体xxxx137| 亚洲欧美变态国产另类| 乱中年女人伦av一区二区| 国产精品www色诱视频| 在线观看一区二区精品视频| 99ri日韩精品视频| 久久精品日韩| 欧美视频一区二区三区…| 激情另类综合| 亚洲男人的天堂在线| 欧美高清视频一区二区三区在线观看 | 国产精品普通话对白| 激情小说另类小说亚洲欧美| 这里只有精品在线播放| 欧美综合二区| 欧美私人网站| 亚洲六月丁香色婷婷综合久久| 欧美中在线观看| 国产精品成人va在线观看| 亚洲黄色成人久久久| 欧美一区国产二区| 国产精品久久国产愉拍 | 韩国成人精品a∨在线观看| 99pao成人国产永久免费视频| 久久久久久久综合色一本| 国产精品乱人伦一区二区| 亚洲精选在线| 欧美精品18+| 亚洲国产精品va在看黑人| 欧美一区网站| 国产欧美在线播放| 亚洲欧美成人在线| 国产精品久久久久久福利一牛影视| 亚洲欧洲精品一区二区精品久久久| 久久久无码精品亚洲日韩按摩| 国产欧美精品日韩精品| 亚洲欧美国产高清va在线播| 欧美日韩亚洲一区二区| 99视频在线观看一区三区| 欧美日韩亚洲网| 99精品国产热久久91蜜凸| 欧美韩国在线| 夜夜嗨av色一区二区不卡| 欧美日韩123| 亚洲一区二区三区久久| 国产精品va| 欧美在线中文字幕| 精品av久久久久电影| 久热这里只精品99re8久| 亚洲国产黄色片| 欧美日本不卡高清| 亚洲天堂黄色| 国产日韩欧美自拍| 久久综合一区二区三区| 亚洲国产精品第一区二区| 欧美福利视频网站| 亚洲一区二区三区在线视频| 国产精品一区二区a| 久久国产手机看片| 最新亚洲电影| 国产精品成人一区| 久久精品在线| 日韩视频一区| 国产色综合久久| 欧美福利电影在线观看| 这里只有精品视频| 国产一区二区高清| 欧美精品一区二区在线播放| 宅男噜噜噜66一区二区66| 国产午夜精品一区二区三区欧美| 蜜桃av噜噜一区二区三区| 亚洲乱亚洲高清| 国产日韩在线一区| 欧美黑人一区二区三区| 亚洲欧美日韩中文在线制服| 国语自产精品视频在线看| 欧美日韩国产一区二区三区| 欧美在线视频一区二区| 亚洲国产精品一区二区尤物区| 国产精品成人在线观看| 免费成人美女女| 欧美亚洲免费电影| 一本久久知道综合久久| 黑人巨大精品欧美一区二区| 欧美性开放视频| 欧美刺激午夜性久久久久久久| 亚洲影院高清在线| 91久久在线| 伊人春色精品| 国产欧美日韩视频一区二区三区| 欧美精品久久一区| 久久久久免费观看| 午夜精品视频网站| 一区二区三区成人| 91久久精品美女| 亚洲成人在线网| 国产亚洲一区在线| 国产精品久久久| 欧美日韩成人在线播放| 久久免费视频网| 久久国产黑丝| 午夜亚洲视频| 亚洲字幕一区二区| 一区二区三区福利| 亚洲美女福利视频网站| 亚洲国产第一| 亚洲国产影院| 亚洲日本免费电影| 亚洲激情女人| 亚洲另类在线视频| 亚洲国产婷婷香蕉久久久久久| 黄色欧美日韩| 国产在线观看一区| 红桃视频国产精品| 黄网站色欧美视频| 在线视频观看日韩| 亚洲国产精品va在线观看黑人| 在线免费一区三区| 狠狠色综合网| 亚洲国产专区| 一区二区欧美精品| 亚洲一区二区在线免费观看| 亚洲香蕉在线观看| 亚洲欧美日韩国产中文| 性一交一乱一区二区洋洋av| 欧美综合二区| 女人香蕉久久**毛片精品| 欧美高清在线一区| 欧美性久久久| 国产免费亚洲高清| 伊人激情综合| 日韩天堂在线视频| 亚洲欧美一区二区三区极速播放 | 亚洲一区观看| 久久精品国产精品亚洲| 老鸭窝毛片一区二区三区| 欧美精品日韩一区| 国产精品日韩二区| 在线观看三级视频欧美| 亚洲精品久久久蜜桃| 午夜视频久久久| 免费在线观看日韩欧美| 国产精品国产三级国产普通话三级 | 亚洲综合导航| 久久综合色8888|