国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Understanding Deep Neural Networks培訓

 
   班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
       每期人數限3到5人。
   上課時間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開課時間(周末班/連續班/晚班):2019年1月26日
   實驗設備
     ☆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質量保障

        1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
        3、培訓合格學員可享受免費推薦就業機會。

課程大綱
 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics

Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano

Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics

Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics

Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron

Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines

Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks

Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks

Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial


 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
中国成人亚色综合网站| 麻豆成人在线观看| 在线观看欧美亚洲| 国产精品狠色婷| 免费在线看成人av| 亚洲一区视频在线| aa级大片欧美| 亚洲乱码国产乱码精品精98午夜 | 亚洲小说区图片区| 亚洲精品美女久久7777777| 狠狠色丁香婷婷综合久久片| 国产伦一区二区三区色一情| 欧美日韩综合久久| 欧美看片网站| 欧美另类变人与禽xxxxx| 欧美波霸影院| 欧美成人首页| 欧美国产三级| 欧美日韩国产色视频| 欧美国产精品日韩| 欧美片网站免费| 欧美日韩精品在线视频| 欧美三级免费| 国产精品久久久久久久久久久久| 国产精品99一区二区| 欧美午夜精品久久久久久超碰| 欧美精品一区二区三区久久久竹菊| 欧美韩日一区二区三区| 欧美精品网站| 国产精品成人一区二区三区吃奶| 欧美视频日韩视频| 国产精品日韩高清| 国产一区在线观看视频| 韩国三级电影一区二区| 亚洲二区在线视频| 日韩视频一区二区三区在线播放免费观看 | 欧美激情亚洲一区| 欧美吻胸吃奶大尺度电影| 欧美色欧美亚洲高清在线视频| 欧美视频在线观看| 国产一区二区视频在线观看| 激情久久五月| 日韩一区二区免费高清| 亚洲网站在线| 久久久久久穴| 欧美乱在线观看| 国产欧美日韩免费| 亚洲高清免费视频| 中国成人在线视频| 久久久国产一区二区三区| 欧美成人a视频| 国产精品美女www爽爽爽视频| 国产亚洲毛片在线| 99热在线精品观看| 久久久噜噜噜久噜久久| 欧美日韩国产在线观看| 国产视频久久网| 日韩午夜在线电影| 久久―日本道色综合久久| 欧美日韩免费观看一区二区三区 | 在线欧美小视频| 亚洲永久免费精品| 欧美freesex8一10精品| 国产精品亚洲不卡a| 亚洲精品看片| 另类春色校园亚洲| 国产精品资源在线观看| 99精品视频免费观看| 久久亚洲精品网站| 国产欧美亚洲日本| 亚洲午夜成aⅴ人片| 欧美搞黄网站| 在线观看欧美一区| 欧美制服丝袜第一页| 国产精品成人免费| 日韩亚洲欧美一区二区三区| 久久久久久久97| 国产伦精品一区二区三区免费 | 国产精品视频专区| 中文日韩在线| 欧美伦理a级免费电影| 亚洲福利视频二区| 久久久免费精品视频| 国产日韩欧美在线一区| 亚洲在线中文字幕| 欧美性开放视频| 一本色道久久综合亚洲91| 欧美电影免费观看| 亚洲欧洲精品一区| 免费成人高清在线视频| 在线电影国产精品| 老司机免费视频久久| 一区二区在线观看视频在线观看| 欧美中日韩免费视频| 国内自拍亚洲| 免费久久99精品国产| 亚洲人成网站在线播| 欧美日韩第一页| 亚洲视频在线视频| 国产精品无码专区在线观看| 午夜精品久久久久| 国产一区二区主播在线| 久久久噜噜噜久久中文字幕色伊伊| 国产综合色精品一区二区三区| 久久久精品一区二区三区| 激情欧美一区二区| 欧美高清在线观看| 一本一本a久久| 国产日韩欧美不卡在线| 麻豆av福利av久久av| 亚洲人成网站777色婷婷| 欧美日韩直播| 久久大香伊蕉在人线观看热2| 激情久久五月天| 欧美精品一级| 欧美影院在线播放| 亚洲国产天堂久久综合| 欧美日韩在线三级| 欧美在线观看一区二区| 亚洲人www| 国产免费一区二区三区香蕉精| 久久久久国产精品厨房| 亚洲精品专区| 国产亚洲午夜| 欧美亚洲成人精品| 老司机凹凸av亚洲导航| 亚洲视频免费看| 亚洲国产精品电影| 国产精品一区二区在线观看| 免费看的黄色欧美网站| 午夜精品国产| 亚洲免费电影在线| 在线看日韩av| 国产一区二区高清视频| 欧美日韩黄色一区二区| 久热国产精品视频| 性亚洲最疯狂xxxx高清| 99精品视频一区| 亚洲国产一区二区三区青草影视| 国产女人18毛片水18精品| 欧美精品一区在线| 久久亚洲精品一区| 欧美一区二区三区四区高清| 一区二区av在线| 亚洲欧洲一区二区在线播放| 国产在线精品自拍| 国产精品电影网站| 欧美视频一二三区| 欧美日本一区二区三区| 蜜臀va亚洲va欧美va天堂| 久久精品国产2020观看福利| 亚洲一区二区三区中文字幕| 亚洲美女中文字幕| 亚洲乱码一区二区| 亚洲精品乱码久久久久久日本蜜臀| 一区在线视频| 精品成人a区在线观看| 国产午夜精品美女视频明星a级 | 欧美一级二级三级蜜桃| 亚洲欧美久久久久一区二区三区| 一本色道久久88综合亚洲精品ⅰ| 亚洲日本成人| 亚洲免费高清视频| 一本一道久久综合狠狠老精东影业| 亚洲九九精品| 这里只有精品视频在线| 在线一区视频| 亚洲欧美日韩一区二区| 性欧美video另类hd性玩具| 亚洲欧美日韩电影| 欧美在线视频播放| 久久久水蜜桃| 美日韩精品视频免费看| 欧美aⅴ99久久黑人专区| 欧美刺激午夜性久久久久久久| 欧美成人精品一区二区| 欧美久久视频| 国产精品福利网站| 国产一区二区黄色| 亚洲国产欧美在线| 在线综合视频| 性欧美暴力猛交69hd| 久久久久久一区二区三区| 欧美阿v一级看视频| 欧美日韩成人在线播放| 国产麻豆91精品| 永久久久久久| 亚洲午夜高清视频| 久久久精品tv| 欧美日韩另类丝袜其他| 国产精品性做久久久久久| 在线观看欧美日本| 亚洲视频成人| 久久久综合视频| 欧美婷婷在线| 一区在线电影| 先锋影院在线亚洲| 欧美精品在线一区二区| 国产伪娘ts一区| 99re6这里只有精品|