国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

曙海教育集團
全國報名免費熱線:4008699035 微信:shuhaipeixun
或15921673576(微信同號) QQ:1299983702
首頁 課程表 在線聊 報名 講師 品牌 QQ聊 活動 就業
 
Understanding Deep Neural Networks培訓

 
   班級規模及環境--熱線:4008699035 手機:15921673576( 微信同號)
       每期人數限3到5人。
   上課時間和地點
上課地點:【上海】:同濟大學(滬西)/新城金郡商務樓(11號線白銀路站) 【深圳分部】:電影大廈(地鐵一號線大劇院站)/深圳大學成教院 【北京分部】:北京中山學院/福鑫大樓 【南京分部】:金港大廈(和燕路) 【武漢分部】:佳源大廈(高新二路) 【成都分部】:領館區1號(中和大道) 【沈陽分部】:沈陽理工大學/六宅臻品 【鄭州分部】:鄭州大學/錦華大廈 【石家莊分部】:河北科技大學/瑞景大廈 【廣州分部】:廣糧大廈 【西安分部】:協同大廈
最近開課時間(周末班/連續班/晚班):2019年1月26日
   實驗設備
     ☆資深工程師授課
        
        ☆注重質量 ☆邊講邊練

        ☆合格學員免費推薦工作
        ★實驗設備請點擊這兒查看★
   質量保障

        1、培訓過程中,如有部分內容理解不透或消化不好,可免費在以后培訓班中重聽;
        2、培訓結束后,授課老師留給學員聯系方式,保障培訓效果,免費提供課后技術支持。
        3、培訓合格學員可享受免費推薦就業機會。

課程大綱
 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics

Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano

Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics

Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics

Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron

Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines

Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks

Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks

Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

 
  備案號:備案號:滬ICP備08026168號-1 .(2024年07月24日)...............
国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
免费人成精品欧美精品| 国产精品久久久久久久久久ktv| 欧美日韩一二三四五区| 狠狠色综合网| 久久激情综合| 激情文学综合丁香| 久久精品国产精品亚洲| 国产小视频国产精品| 篠田优中文在线播放第一区| 国产日韩一区二区三区在线播放| 亚洲一区在线视频| 精品成人一区二区三区| 欧美一区二区| 国内激情久久| 久久一区国产| 亚洲清纯自拍| 欧美日韩精品免费观看视频完整| 99riav1国产精品视频| 欧美日韩一区不卡| 亚洲一区二区三区免费在线观看 | 亚洲欧美久久久| 国产精品久久久久免费a∨ | 国内精品久久久| 久久久久久有精品国产| 亚洲高清不卡在线| 欧美另类高清视频在线| 中文成人激情娱乐网| 国产精品久久久久免费a∨大胸| 亚洲女性裸体视频| 黑人巨大精品欧美一区二区小视频| 久久影视精品| 一区二区精品国产| 国产视频精品va久久久久久| 毛片av中文字幕一区二区| 99视频在线观看一区三区| 欧美视频亚洲视频| 久久精品免费| 亚洲乱码视频| 国产啪精品视频| 欧美大片18| 亚洲欧美综合精品久久成人| 韩日欧美一区二区三区| 欧美日韩另类国产亚洲欧美一级| 欧美一级二区| 亚洲精品一区二区三区蜜桃久| 国产精品久久久亚洲一区| 久久久综合视频| 一区二区三区免费看| 韩国欧美一区| 欧美日韩免费高清| 久久久久久久波多野高潮日日| av成人免费| 狠狠色伊人亚洲综合成人| 欧美日韩系列| 免费欧美在线| 久久精品系列| 亚洲欧美国内爽妇网| 亚洲国产成人在线| 国产日韩一区| 欧美天天综合网| 欧美激情成人在线视频| 一区二区三区免费看| 亚洲一二三区精品| 国产偷自视频区视频一区二区| 欧美成黄导航| 欧美一区午夜精品| 日韩亚洲国产欧美| 国产一区二区三区久久| 欧美精品久久99| 久久国产免费看| 亚洲欧美日韩爽爽影院| 91久久夜色精品国产网站| 国产夜色精品一区二区av| 欧美揉bbbbb揉bbbbb| 免费久久99精品国产| 欧美在线观看天堂一区二区三区| 亚洲最新视频在线| 亚洲精选一区二区| 亚洲国产裸拍裸体视频在线观看乱了| 国产麻豆成人精品| 国产精品久久久久毛片大屁完整版| 欧美另类视频| 在线视频你懂得一区 | 欧美日韩免费在线| 久久人体大胆视频| 性色av一区二区三区红粉影视| 一区二区黄色| 99精品免费网| 日韩视频国产视频| 亚洲精品视频在线播放| 最新精品在线| 日韩视频中午一区| 日韩亚洲一区二区| 一本色道久久综合精品竹菊| 99国产一区| 亚洲一级在线观看| 篠田优中文在线播放第一区| 欧美一区日本一区韩国一区| 欧美一区二区三区四区高清 | 午夜精品久久久久久久久久久久久| 亚洲社区在线观看| 亚洲综合日韩| 欧美一级久久久久久久大片| 久久成人一区| 久热综合在线亚洲精品| 欧美阿v一级看视频| 欧美日本不卡视频| 国产精品久久久久久久久果冻传媒| 国产精品美女在线观看| 国产日韩亚洲欧美精品| 在线观看精品| 亚洲精品一区二区三区樱花| 国产精品99久久久久久久久| 午夜精品免费| 久久久蜜臀国产一区二区| 欧美黑人在线播放| 国产精品九九久久久久久久| 国产亚洲欧美一区二区三区| 在线观看日韩精品| 日韩天堂在线观看| 午夜在线播放视频欧美| 久久综合激情| 欧美午夜精品一区| 国产一区二区三区的电影| 亚洲区一区二区三区| 亚洲综合日韩在线| 男人插女人欧美| 国产精品每日更新| 亚洲国产日韩在线| 亚洲免费一在线| 免费短视频成人日韩| 国产精品h在线观看| 在线看片第一页欧美| 亚洲在线观看视频网站| 鲁鲁狠狠狠7777一区二区| 国产精品久久久久久久久久免费| 黄色精品一区二区| 亚洲一区在线视频| 欧美激情精品| 黄色精品一二区| 亚洲尤物在线视频观看| 欧美成人中文| 狠狠v欧美v日韩v亚洲ⅴ| 亚洲午夜av在线| 欧美福利网址| 精品91视频| 午夜在线精品| 欧美日韩在线亚洲一区蜜芽| 亚洲福利在线看| 久久久国产亚洲精品| 国产精品久久国产愉拍| 亚洲美女电影在线| 久久午夜精品一区二区| 国产啪精品视频| 亚洲免费视频网站| 欧美另类人妖| 亚洲国产欧美日韩| 久久久夜精品| 国产视频一区在线观看| 在线亚洲美日韩| 欧美日韩精品二区第二页| 亚洲国产精品一区在线观看不卡| 久久超碰97人人做人人爱| 国产精品日本精品| 一区二区久久久久| 欧美日韩国产成人精品| 亚洲激情在线播放| 久久综合色综合88| 又紧又大又爽精品一区二区| 久久国产日韩| 国精品一区二区| 欧美α欧美αv大片| 欧美丝袜一区二区三区| 亚洲精品乱码视频| 免费在线国产精品| 亚洲国产精彩中文乱码av在线播放| 久久av免费一区| 国产亚洲欧美中文| 久久激情视频| 一区二区在线看| 美女久久一区| 亚洲精品女人| 欧美日韩在线看| 亚洲一区免费| 国产欧美日韩视频一区二区| 午夜精品美女自拍福到在线| 国产精品中文在线| 久久成人av少妇免费| 狠狠色狠狠色综合日日tαg| 免费成人小视频| 亚洲日本视频| 国产精品扒开腿做爽爽爽软件| 亚洲在线日韩| 国产一区视频观看| 欧美1区3d| 一区二区三区欧美日韩| 国产精品系列在线| 久久免费国产精品| 亚洲精品在线免费| 国产精品一区免费视频|