国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:Understanding Deep Neural Networks培訓
4401 人關注
(78637/99817)
課程大綱:

    Understanding Deep Neural Networks培訓

 

 

 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics
Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano
Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics
Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics
Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron
Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines
Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks
Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks
Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
国产综合久久久久久| 欧美专区在线观看| 国产亚洲a∨片在线观看| 欧美 日韩 国产在线| 午夜一区不卡| 亚洲一区观看| 99视频一区| 亚洲伦伦在线| 亚洲国产天堂久久综合| 韩日欧美一区二区| 国产日韩精品入口| 国产精品国产自产拍高清av| 欧美女人交a| 欧美好骚综合网| 欧美mv日韩mv国产网站app| 久久成人免费电影| 久久成人免费日本黄色| 亚洲欧美综合v| 亚洲一区二区不卡免费| 亚洲深夜影院| 日韩亚洲欧美高清| 9i看片成人免费高清| 亚洲精品视频在线观看免费| 最新国产乱人伦偷精品免费网站| 在线观看成人网| 136国产福利精品导航| 在线不卡视频| 亚洲人成欧美中文字幕| 亚洲伦伦在线| 99精品视频免费观看视频| 亚洲美女诱惑| 亚洲综合首页| 久久精品五月婷婷| 免费日韩av片| 欧美成人精品一区二区三区| 欧美国产亚洲另类动漫| 欧美人与性动交α欧美精品济南到| 欧美精品久久一区二区| 欧美三级欧美一级| 国产日韩精品一区二区三区在线 | 欧美人妖在线观看| 欧美午夜精品久久久久久人妖| 欧美午夜精品久久久久久浪潮| 国产精品美女久久久久aⅴ国产馆| 国产精品三级视频| 极品av少妇一区二区| 亚洲激情亚洲| 亚洲欧美国产日韩天堂区| 欧美一区二区三区四区在线观看地址| 久久久99久久精品女同性| 久久综合亚州| 国产精品捆绑调教| 激情欧美一区二区三区| 99精品福利视频| 久久精品二区| 欧美日韩在线第一页| 国产一区二区主播在线| 亚洲乱码日产精品bd| 久久黄金**| 国产精品啊啊啊| 一本在线高清不卡dvd| 欧美一级黄色网| 欧美片在线观看| 国内不卡一区二区三区| 在线视频你懂得一区| 狂野欧美性猛交xxxx巴西| 国产精品你懂的在线欣赏| 亚洲国产欧美在线人成| 欧美在线观看视频一区二区| 欧美日韩视频在线一区二区| 狠狠色狠狠色综合日日五| 亚洲免费一在线| 欧美日韩一区二区三| 亚洲丶国产丶欧美一区二区三区 | 亚洲综合不卡| 欧美精品色一区二区三区| 国产真实乱子伦精品视频| 亚洲深夜影院| 欧美系列电影免费观看| 亚洲精品国产精品乱码不99| 久久久之久亚州精品露出| 国产欧美日韩视频一区二区三区 | 99精品视频免费观看视频| 欧美va亚洲va国产综合| 影音先锋欧美精品| 久久久精品视频成人| 国产日韩在线一区| 亚洲欧美在线观看| 国产精品色婷婷久久58| 久久激情视频免费观看| 国产精品视频yy9299一区| 亚洲天堂免费观看| 国产精品麻豆欧美日韩ww| 亚洲性线免费观看视频成熟| 欧美日韩另类一区| 中文国产一区| 国产精品五区| 久久国产视频网站| 伊人久久亚洲影院| 欧美不卡激情三级在线观看| 亚洲国产精品小视频| 男女激情视频一区| 亚洲另类自拍| 欧美色综合天天久久综合精品| 一本色道久久综合亚洲91| 国产精品白丝av嫩草影院| 午夜精品久久久久久| 韩国成人精品a∨在线观看| 久久视频在线免费观看| 亚洲精品久久久久久久久| 欧美色综合天天久久综合精品| 一本一道久久综合狠狠老精东影业| 欧美午夜美女看片| 久久aⅴ国产紧身牛仔裤| 在线欧美亚洲| 国产精品久久久久国产精品日日| 香蕉精品999视频一区二区| 国内久久视频| 欧美日韩精品一区| 久久国产欧美日韩精品| 亚洲另类在线一区| 国产一区二区高清视频| 国产精品剧情在线亚洲| 久久国产88| 99国产精品久久久| 国内精品久久久久久久影视蜜臀| 欧美国产精品va在线观看| 亚洲伊人网站| 亚洲国产精品成人综合色在线婷婷| 欧美日韩理论| 久久蜜桃资源一区二区老牛| 中文有码久久| 亚洲国产一区二区三区高清| 国产精品视频yy9099| 你懂的网址国产 欧美| 亚洲男同1069视频| 亚洲美女区一区| 尹人成人综合网| 国产女主播一区| 欧美三级欧美一级| 欧美成人一品| 久久人人超碰| 欧美一区二区三区婷婷月色 | 欧美日本在线视频| 美女日韩欧美| 欧美中文字幕视频| 亚洲综合三区| 一本色道综合亚洲| 亚洲精品日本| 亚洲缚视频在线观看| 红桃av永久久久| 国产精品一区二区久久国产| 欧美色另类天堂2015| 欧美精品在线极品| 欧美成人精品不卡视频在线观看| 久久se精品一区精品二区| 亚洲欧美日韩天堂| 亚洲系列中文字幕| 在线综合亚洲欧美在线视频| 亚洲精品1区| 亚洲欧洲一区二区三区久久| 亚洲国产精品一区在线观看不卡 | 在线精品国产欧美| 激情综合网激情| 一区二区在线看| 一区在线影院| 亚洲国产精品悠悠久久琪琪| 狠狠色丁香久久婷婷综合_中| 国产一区二区在线免费观看| 国产专区欧美精品| 伊人久久大香线蕉av超碰演员| 国产综合久久久久久| 1024日韩| 亚洲精品自在久久| 一区二区三区四区国产精品| 亚洲午夜精品在线| 新狼窝色av性久久久久久| 久久激情视频久久| 免费在线成人av| 欧美日韩国产一级片| 国产精品久久久一区二区| 国产乱理伦片在线观看夜一区| 国产欧美日韩视频| 亚洲国产精品福利| 99精品欧美一区二区蜜桃免费| 亚洲欧美成人综合| 老司机精品久久| 欧美日韩一区二区欧美激情| 国产精品最新自拍| 亚洲第一区在线观看| 日韩亚洲欧美中文三级| 亚洲欧美日韩国产中文| 久久深夜福利| 国产精品国产三级国产| 狠狠色2019综合网| 亚洲少妇最新在线视频| 久久伊人亚洲| 国产精品videossex久久发布| 亚洲电影在线播放| 亚洲一区图片|