国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:Introduction Deep Learning and Neural Network for Engineers培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

         Introduction Deep Learning and Neural Network for Engineers培訓(xùn)

 

 

 

 

The course is divided into three separate days, the third being optional.

Day 1 - Machine Learning & Deep Learning: theoretical concepts
1. Introduction IA, Machine Learning & Deep Learning

- History, basic concepts and usual applications of artificial intelligence far

Of the fantasies carried by this domain

- Collective Intelligence: aggregating knowledge shared by many virtual agents

- Genetic algorithms: to evolve a population of virtual agents by selection

- Usual Learning Machine: definition.

- Types of tasks: supervised learning, unsupervised learning, reinforcement learning

- Types of actions: classification, regression, clustering, density estimation, reduction of

dimensionality

- Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

- Machine learning VS Deep Learning: problems on which Machine Learning remains

Today the state of the art (Random Forests & XGBoosts)

2. Basic Concepts of a Neural Network (Application: multi-layer perceptron)

- Reminder of mathematical bases.

- Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

- Definition of the learning of a network of neurons: functions of cost, back-propagation,

Stochastic gradient descent, maximum likelihood.

- Modeling of a neural network: modeling input and output data according to

The type of problem (regression, classification ...). Curse of dimensionality. Distinction between

Multi-feature data and signal. Choice of a cost function according to the data.

- Approximation of a function by a network of neurons: presentation and examples

- Approximation of a distribution by a network of neurons: presentation and examples

- Data Augmentation: how to balance a dataset

- Generalization of the results of a network of neurons.

- Initialization and regularization of a neural network: L1 / L2 regularization, Batch

Normalization ...

- Optimization and convergence algorithms.

3. Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

- Data management tools: Apache Spark, Apache Hadoop

- Tools Machine Learning: Numpy, Scipy, Sci-kit

- DL high level frameworks: PyTorch, Keras, Lasagne

- Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Day 2 - Convolutional and Recurrent Networks
4. Convolutional Neural Networks (CNN).

- Presentation of the CNNs: fundamental principles and applications

- Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and

3D.

- Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of

Innovations brought about by each architecture and their more global applications (Convolution

1x1 or residual connections)

- Use of an attention model.

- Application to a common classification case (text or image)

- CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

5. Recurrent Neural Networks (RNN).

- Presentation of RNNs: fundamental principles and applications.

- Basic operation of the RNN: hidden activation, back propagation through time,

Unfolded version.

- Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

- Convergence and vanising gradient problems

- Classical architectures: Prediction of a temporal series, classification ...

- RNN Encoder Decoder type architecture. Use of an attention model.

- NLP applications: word / character encoding, translation.

- Video Applications: prediction of the next generated image of a video sequence.

Day 3 - Generational Models and Reinforcement Learning
6. Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

- Presentation of the generational models, link with the CNNs seen in day 2

- Auto-encoder: reduction of dimensionality and limited generation

- Variational Auto-encoder: generational model and approximation of the distribution of a

given. Definition and use of latent space. Reparameterization trick. Applications and

Limits observed

- Generative Adversarial Networks: Fundamentals. Dual Network Architecture

(Generator and discriminator) with alternate learning, cost functions available.

- Convergence of a GAN and difficulties encountered.

- Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

- Applications for the generation of images or photographs, text generation, super-
resolution.

7. Deep Reinforcement Learning.

- Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

- Use of a neural network to approximate the state function

- Deep Q Learning: experience replay, and application to the control of a video game.

- Optimization of learning policy. On-policy && off-policy. Actor critic

architecture. A3C.

- Applications: control of a single video game or a digital system.

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
亚洲精品在线视频| 国产精品欧美激情| 亚洲裸体视频| 国内精品福利| 国产日韩欧美一区二区三区在线观看| 久久综合狠狠| 久久九九热免费视频| 午夜精品久久99蜜桃的功能介绍| 亚洲精品精选| 亚洲精品日韩精品| 亚洲黄色在线看| 极品av少妇一区二区| 国产精品自拍视频| 欧美体内she精视频| 欧美日韩一级黄| 欧美美女bb生活片| 欧美精品一区二区三区蜜臀| 免费日韩av片| 久久久一本精品99久久精品66| 亚洲欧美日韩国产中文在线| 亚洲一区二区视频| 美日韩精品免费观看视频| 亚洲精品黄色| 91久久久久久久久| 亚洲人成网站色ww在线| 亚洲激情影视| 日韩一级二级三级| 亚洲尤物在线视频观看| 在线观看国产精品网站| 伊人久久亚洲美女图片| 在线观看成人av| 亚洲欧洲午夜| 日韩亚洲精品在线| 亚洲午夜精品一区二区| 亚洲欧美日韩精品综合在线观看| 亚洲欧美高清| 久久人人爽人人| 欧美精品在线免费| 国产精品免费福利| 狠狠色2019综合网| 亚洲另类一区二区| 亚洲无线视频| 久久综合五月| 欧美日韩在线播| 免费成人在线观看视频| 欧美日本韩国一区| 国产精品永久免费在线| 亚洲大胆视频| 亚洲视频在线视频| 老司机一区二区三区| 小黄鸭精品aⅴ导航网站入口| 欧美专区在线观看一区| 亚洲一区久久久| 久久久久久久97| 欧美在线高清视频| 欧美黑人在线播放| 国产欧美一区二区精品性色| 亚洲激情黄色| 香蕉精品999视频一区二区| 久久综合精品一区| 国产精品女主播一区二区三区| 欧美日韩亚洲网| 国产真实乱偷精品视频免| 国产精品尤物| 亚洲美女在线视频| 久久亚洲高清| 国产欧美亚洲一区| 日韩视频二区| 噜噜噜噜噜久久久久久91 | 国产精品久久国产愉拍| 好看的av在线不卡观看| 亚洲一区二区三区视频| 欧美α欧美αv大片| 韩日视频一区| 欧美在线视频免费播放| 久久精品亚洲国产奇米99| 欧美无乱码久久久免费午夜一区| 亚洲成在线观看| 久久精品成人欧美大片古装| 久久久久久久精| 国产视频综合在线| 小嫩嫩精品导航| 国产精品国产三级国产专播品爱网 | 久久精品盗摄| 国产精品一二一区| 亚洲一区中文| 99xxxx成人网| 欧美激情五月| 亚洲人成绝费网站色www| 免费成人美女女| 亚洲国产精品成人| 欧美v亚洲v综合ⅴ国产v| 在线观看一区二区精品视频| 久久人人爽人人爽爽久久| 国产一区二区三区四区在线观看| 亚洲欧美清纯在线制服| 国产精品一区二区三区免费观看| 中文成人激情娱乐网| 欧美视频在线观看免费网址| 亚洲一区二区av电影| 日韩一区二区精品葵司在线| 欧美精品福利| 一本色道久久| 国产欧美日韩亚洲一区二区三区| 久久成人18免费网站| 精品成人一区二区| 欧美经典一区二区| 国产精品一区三区| 欧美在线www| 永久免费毛片在线播放不卡| 久久综合久久88| 亚洲精品日本| 国产精品热久久久久夜色精品三区| 亚洲欧美日韩国产成人精品影院 | 久久国产乱子精品免费女 | 亚洲大片在线| 欧美日韩国产黄| 性欧美xxxx视频在线观看| 影音先锋久久精品| 欧美午夜寂寞影院| 久久久久久999| 夜夜嗨av一区二区三区网页| 欧美成人精品在线播放| 99热精品在线| 韩国一区二区在线观看| 欧美亚洲一区| 亚洲人成网站在线观看播放| 国产精品专区第二| 欧美大胆人体视频| 亚洲综合视频在线| 亚洲高清视频中文字幕| 国产精品人人爽人人做我的可爱 | 久久久精品欧美丰满| 一区二区欧美精品| 伊人久久综合97精品| 国产精品老女人精品视频| 免费中文日韩| 久久精品亚洲热| 亚洲综合成人婷婷小说| 最新亚洲一区| 韩国一区二区三区在线观看| 国产精品国产三级国产普通话三级| 六月婷婷一区| 久久激情五月激情| 亚洲欧美中文字幕| 一区二区三区日韩| 亚洲激情小视频| 在线看不卡av| 黄色成人在线网站| 国产主播精品在线| 国产麻豆9l精品三级站| 欧美体内she精视频在线观看| 欧美大色视频| 欧美va天堂| 欧美福利精品| 欧美大片专区| 欧美成人精品在线播放| 久热爱精品视频线路一| 久久久国产一区二区| 久久久久国产精品www| 久久av一区二区三区漫画| 性娇小13――14欧美| 香蕉尹人综合在线观看| 亚洲欧美国产va在线影院| 亚洲天堂av高清| 亚洲一区二区三区四区五区黄| 一区二区三区高清| 一区二区三区日韩精品视频| 99精品福利视频| 宅男噜噜噜66一区二区66| 在线中文字幕日韩| 亚洲在线播放| 欧美在线一二三| 久久中文字幕一区| 欧美激情第一页xxx| 欧美日韩妖精视频| 另类av一区二区| 欧美国产成人精品| 欧美三级日本三级少妇99| 国产精品高潮呻吟| 国产亚洲人成a一在线v站| 狠狠色丁香婷婷综合影院| 亚洲大胆人体视频| 一本不卡影院| 久久成人免费电影| 你懂的成人av| 欧美性猛交xxxx免费看久久久 | 国产精品国产自产拍高清av王其| 国产精品视频免费观看www| 国产一区视频在线观看免费| 亚洲国产精品久久久| 国产婷婷色一区二区三区四区| 韩国精品在线观看| av成人激情| 久久精品免费播放| 欧美区一区二| 狠狠色丁香久久婷婷综合_中| 亚洲国产日韩在线| 欧美一进一出视频| 欧美国产精品一区|