国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:為電信服務供應商的智能大數據信息業務培訓
4401 人關注
(78637/99817)
課程大綱:

         為電信服務供應商的智能大數據信息業務培訓

 

 

 

Breakdown of topics on daily basis: (Each session is 2 hours)

Day-1: Session -1: Business Overview of Why Big Data Business Intelligence in Telco.
Case Studies from T-Mobile, Verizon etc.
Big Data adaptation rate in North American Telco & and how they are aligning their future business model and operation around Big Data BI
Broad Scale Application Area
Network and Service management
Customer Churn Management
Data Integration & Dashboard visualization
Fraud management
Business Rule generation
Customer profiling
Localized Ad pushing
Day-1: Session-2 : Introduction of Big Data-1
Main characteristics of Big Data-volume, variety, velocity and veracity. MPP architecture for volume.
Data Warehouses – static schema, slowly evolving dataset
MPP Databases like Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
Day-1 : Session -3 : Introduction to Big Data-2
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issue in Big Data
RDBMS – static structure/schema, doesn’t promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Day-1 : Session-4 : Big Data Introduction-3 : Hadoop
When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – tough to do with traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS
MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
Day-2: Session-1.1: Spark : In Memory distributed database
What is “In memory” processing?
Spark SQL
Spark SDK
Spark API
RDD
Spark Lib
Hanna
How to migrate an existing Hadoop system to Spark
Day-2 Session -1.2: Storm -Real time processing in Big Data
Streams
Sprouts
Bolts
Topologies
Day-2: Session-2: Big Data Management System
Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Evolving Big Data platform tools for tracking
ETL layer application issues
Day-2: Session-3: Predictive analytics in Business Intelligence -1: Fundamental Techniques & Machine learning based BI :
Introduction to Machine learning
Learning classification techniques
Bayesian Prediction-preparing training file
Markov random field
Supervised and unsupervised learning
Feature extraction
Support Vector Machine
Neural Network
Reinforcement learning
Big Data large variable problem -Random forest (RF)
Representation learning
Deep learning
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
LDA and topic modeling
Agile learning
Agent based learning- Example from Telco operation
Distributed learning –Example from Telco operation
Introduction to Open source Tools for predictive analytics : R, Rapidminer, Mahut
More scalable Analytic-Apache Hama, Spark and CMU Graph lab
Day-2: Session-4 Predictive analytics eco-system-2: Common predictive analytic problems in Telecom
Insight analytic
Visualization analytic
Structured predictive analytic
Unstructured predictive analytic
Customer profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery –failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytic
Network analytic
Text Analytics
Technology assisted review
Fraud analytic
Real Time Analytic
Day-3 : Sesion-1 : Network Operation analytic- root cause analysis of network failures, service interruption from meta data, IPDR and CRM:
CPU Usage
Memory Usage
QoS Queue Usage
Device Temperature
Interface Error
IoS versions
Routing Events
Latency variations
Syslog analytics
Packet Loss
Load simulation
Topology inference
Performance Threshold
Device Traps
IPDR ( IP detailed record) collection and processing
Use of IPDR data for Subscriber Bandwidth consumption, Network interface utilization, modem status and diagnostic
HFC information
Day-3: Session-2: Tools for Network service failure analysis:
Network Summary Dashboard: monitor overall network deployments and track your organization's key performance indicators
Peak Period Analysis Dashboard: understand the application and subscriber trends driving peak utilization, with location-specific granularity
Routing Efficiency Dashboard: control network costs and build business cases for capital projects with a complete understanding of interconnect and transit relationships
Real-Time Entertainment Dashboard: access metrics that matter, including video views, duration, and video quality of experience (QoE)
IPv6 Transition Dashboard: investigate the ongoing adoption of IPv6 on your network and gain insight into the applications and devices driving trends
Case-Study-1: The Alcatel-Lucent Big Network Analytics (BNA) Data Miner
Multi-dimensional mobile intelligence (m.IQ6)
Day-3 : Session 3: Big Data BI for Marketing/Sales –Understanding sales/marketing from Sales data: ( All of them will be shown with a live predictive analytic demo )
To identify highest velocity clients
To identify clients for a given products
To identify right set of products for a client ( Recommendation Engine)
Market segmentation technique
Cross-Sale and upsale technique
Client segmentation technique
Sales revenue forecasting technique
Day-3: Session 4: BI needed for Telco CFO office:
Overview of Business Analytics works needed in a CFO office
Risk analysis on new investment
Revenue, profit forecasting
New client acquisition forecasting
Loss forecasting
Fraud analytic on finances ( details next session )
Day-4 : Session-1: Fraud prevention BI from Big Data in Telco-Fraud analytic:
Bandwidth leakage / Bandwidth fraud
Vendor fraud/over charging for projects
Customer refund/claims frauds
Travel reimbursement frauds
Day-4 : Session-2: From Churning Prediction to Churn Prevention:
3 Types of Churn : Active/Deliberate , Rotational/Incidental, Passive Involuntary
3 classification of churned customers: Total, Hidden, Partial
Understanding CRM variables for churn
Customer behavior data collection
Customer perception data collection
Customer demographics data collection
Cleaning CRM Data
Unstructured CRM data ( customer call, tickets, emails) and their conversion to structured data for Churn analysis
Social Media CRM-new way to extract customer satisfaction index
Case Study-1 : T-Mobile USA: Churn Reduction by 50%
Day-4 : Session-3: How to use predictive analysis for root cause analysis of customer dis-satisfaction :
Case Study -1 : Linking dissatisfaction to issues – Accounting, Engineering failures like service interruption, poor bandwidth service
Case Study-2: Big Data QA dashboard to track customer satisfaction index from various parameters such as call escalations, criticality of issues, pending service interruption events etc.
Day-4: Session-4: Big Data Dashboard for quick accessibility of diverse data and display :
Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based Advertisement
Tracking system and management
Day-5 : Session-1: How to justify Big Data BI implementation within an organization:
Defining ROI for Big Data implementation
Case studies for saving Analyst Time for collection and preparation of Data –increase in productivity gain
Case studies of revenue gain from customer churn
Revenue gain from location based and other targeted Ad
An integrated spreadsheet approach to calculate approx. expense vs. Revenue gain/savings from Big Data implementation.
Day-5 : Session-2: Step by Step procedure to replace legacy data system to Big Data System:
Understanding practical Big Data Migration Roadmap
What are the important information needed before architecting a Big Data implementation
What are the different ways of calculating volume, velocity, variety and veracity of data
How to estimate data growth
Case studies in 2 Telco
Day-5: Session 3 & 4: Review of Big Data Vendors and review of their products. Q/A session:
AccentureAlcatel-Lucent
Amazon –A9
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
Huawei
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
VMware (Part of EMC)

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
亚洲欧洲在线观看| 国产精品色午夜在线观看| 亚洲天天影视| 亚洲黄色片网站| 国产九九精品视频| 欧美日韩一区精品| 欧美激情女人20p| 久久在线免费观看视频| 欧美在线免费视屏| 亚洲欧美成人网| 亚洲一区二区三区免费在线观看| 亚洲激情av在线| 亚洲国产欧美精品| 亚洲福利在线看| 亚洲国产高清一区二区三区| 狠狠综合久久av一区二区小说| 国产精品乱人伦中文| 国产精品久久福利| 欧美视频在线看| 欧美视频中文在线看| 欧美日韩一二三区| 欧美视频亚洲视频| 欧美性jizz18性欧美| 国产精品成人一区二区艾草| 欧美视频亚洲视频| 国产精品国产三级国产专区53| 欧美午夜精品久久久| 欧美日韩综合在线免费观看| 欧美日韩国产成人在线91| 久久人人看视频| 久久免费精品视频| 久久国产精品色婷婷| 欧美在线一二三| 香蕉久久夜色精品| 久久精品视频网| 欧美在线高清| 欧美在线视频一区二区三区| 午夜久久福利| 午夜精品电影| 亚洲尤物影院| 亚洲一区二区久久| 亚洲欧美中文日韩在线| 久久福利精品| 久久久久久久尹人综合网亚洲| 久久一区二区三区超碰国产精品| 久久久xxx| 久久伊人亚洲| 欧美精品二区| 欧美视频精品一区| 国产主播精品在线| 亚洲欧洲一区二区在线播放| 一区二区三区视频观看| 欧美一级播放| 蜜臀久久99精品久久久画质超高清 | 精品99视频| 一区二区电影免费在线观看| 欧美亚洲一区在线| 免费精品视频| 国产日韩在线看| 亚洲人午夜精品| 久久国产精品99国产精| 欧美日韩国产二区| 伊人久久噜噜噜躁狠狠躁 | 欧美日韩精品| 伊人男人综合视频网| 亚洲欧美日韩国产一区二区| 欧美成人在线免费观看| 国模套图日韩精品一区二区| 亚洲视频高清| 欧美日韩国产91| 亚洲国产精品999| 久久精品国产99| 国产精品红桃| 在线视频亚洲欧美| 欧美电影在线免费观看网站| 国产一区二区日韩精品| 中文av一区二区| 欧美剧在线免费观看网站| 伊人激情综合| 久久综合网hezyo| 国产一区二区精品| 欧美在线视频观看| 国产日韩欧美麻豆| 午夜在线成人av| 国产精品任我爽爆在线播放| 亚洲视频香蕉人妖| 欧美午夜电影完整版| 在线亚洲精品| 国产精品免费福利| 亚洲欧美日韩成人高清在线一区| 欧美性久久久| 在线亚洲免费| 国产精品综合色区在线观看| 亚洲欧美国产精品桃花| 国产欧美精品xxxx另类| 销魂美女一区二区三区视频在线| 国产精品欧美久久久久无广告| 亚洲图片欧洲图片av| 国产精品久久久久一区二区三区共 | 精品动漫3d一区二区三区| 久久福利视频导航| 国产午夜精品久久久久久免费视 | 欧美午夜精品一区| 亚洲欧美一区在线| 国产欧美一区二区三区沐欲| 久久成人久久爱| 狠狠色伊人亚洲综合成人 | 在线日韩视频| 欧美96在线丨欧| 99这里只有久久精品视频| 欧美三区视频| 午夜在线电影亚洲一区| 国产色爱av资源综合区| 久久中文字幕一区二区三区| 亚洲人成在线观看| 国产精品久久久久久影院8一贰佰| 亚洲自拍另类| 亚洲电影一级黄| 欧美午夜免费| 久久午夜色播影院免费高清| 99精品99| 在线不卡中文字幕| 欧美色图天堂网| 久久九九国产精品怡红院| 亚洲精品久久久蜜桃| 国产精品伊人日日| 欧美电影专区| 欧美在线观看一区| 日韩视频―中文字幕| 国产婷婷97碰碰久久人人蜜臀| 免费不卡中文字幕视频| 亚洲欧美日韩精品久久奇米色影视 | 日韩午夜激情av| 国产综合在线视频| 国产精品福利在线| 欧美大片18| 久久精品72免费观看| 亚洲图片欧美午夜| 最新精品在线| 狠狠狠色丁香婷婷综合激情| 国产精品成人免费精品自在线观看| 久久久久免费| 欧美一区二区黄色| 亚洲一区二区三区视频播放| 亚洲国产婷婷香蕉久久久久久| 国产精品视频网址| 欧美日韩一区综合| 欧美成人日本| 免费成人激情视频| 久久久久久国产精品mv| 亚洲免费网址| 亚洲午夜电影在线观看| 99在线精品视频| 亚洲人成在线免费观看| 亚洲第一精品久久忘忧草社区| 国产真实乱偷精品视频免| 国产欧美日韩综合精品二区| 国产精品magnet| 欧美午夜免费| 国产精品久久久久久模特| 欧美日韩综合不卡| 欧美天堂亚洲电影院在线观看| 欧美另类一区二区三区| 欧美日韩国产高清| 欧美日韩综合精品| 国产精品第十页| 国产精品影院在线观看| 国产精一区二区三区| 国产伦精品一区二区三区高清| 国产精品麻豆成人av电影艾秋| 国产精品va| 国产欧美在线看| 狠狠色噜噜狠狠色综合久| 激情久久影院| 91久久夜色精品国产网站| 亚洲美女中文字幕| 亚洲一区在线免费| 久久国产福利国产秒拍| 久久另类ts人妖一区二区| 蘑菇福利视频一区播放| 欧美日韩黄视频| 国产精品免费一区豆花| 国内精品久久久久伊人av| 影音先锋日韩资源| 99av国产精品欲麻豆| 亚洲中午字幕| 久久永久免费| 国产精品草莓在线免费观看| 国产久一道中文一区| 一区二区三区在线观看视频| 亚洲日本aⅴ片在线观看香蕉| 日韩视频在线观看| 亚洲综合国产激情另类一区| 久久久www免费人成黑人精品| 欧美成人黑人xx视频免费观看| 欧美日韩在线直播| 国产一区三区三区| 日韩视频永久免费观看| 欧美在线观看日本一区| 欧美人成网站|