国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:無人駕駛汽車的狀態估計與定位培訓
4401 人關注
(78637/99817)
課程大綱:

          無人駕駛汽車的狀態估計與定位培訓

 

 

 

Module 0: Welcome to Course
2: State Estimation and Localization for Self-Driving CarsThis module introduces
you to the main concepts discussed in the course and presents the layout of the course.
The module describes and motivates the problems of state estimation and localization for self-driving cars.
Module 1: Least SquaresThe method of least squares, developed by
Carl Friedrich Gauss in 1795, is a well known technique for estimating parameter values from data.
This module provides a review of least squares, for the cases of unweighted and weighted observations.
There is a deep connection between least squares and maximum
likelihood estimators (when the observations are considered to be Gaussian random variables) and this connection
is established and explained. Finally, the module develops a technique
to transform the traditional 'batch' least squares estimator to a recursive form, suitable for online,
real-time estimation applications.Module 2: State Estimation - Linear and Nonlinear Kalman FiltersAny engineer working
on autonomous vehicles must understand the Kalman filter,
first described in a paper by Rudolf Kalman in 1960. The filter has been recognized as one of the top 10 algorithms of the 20th century,
is implemented in software that runs on your smartphone and on modern jet aircraft,
and was crucial to enabling the Apollo spacecraft to reach the moon.
This module derives the Kalman filter equations from a least squares perspective, for linear systems.
The module also examines why the Kalman filter is the best linear unbiased estimator (that is, it is optimal in the linear case).
The Kalman filter, as originally published, is a linear algorithm;
however, all systems in practice are nonlinear to some degree. Shortly after the Kalman filter was developed,
it was extended to nonlinear systems, resulting in an algorithm now called the ‘extended’ Kalman filter, or EKF.
The EKF is the ‘bread and butter’ of state estimators, and should be in every engineer’s toolbox.
This module explains how the EKF operates (i.e., through linearization) and discusses its relationship to the original Kalman filter.
The module also provides an overview of the unscented Kalman filter,
a more recently developed and very popular member of the Kalman filter family.
Module 3: GNSS/INS Sensing for Pose EstimationTo navigate reliably,
autonomous vehicles require an estimate of their pose (position and orientation)
in the world (and on the road) at all times. Much like for modern aircraft,
this information can be derived from a combination of GPS measurements and inertial navigation system (INS) data.
This module introduces sensor models for inertial measurement units and GPS (and, more broadly, GNSS) receivers;
performance and noise characteristics are reviewed.
The module describes ways in which the two sensor systems can be used
in combination to provide accurate and robust vehicle pose estimates.
Module 4: LIDAR SensingLIDAR (light detection and ranging) sensing is an enabling technology for self-driving vehicles.
LIDAR sensors can ‘see’ farther than cameras and are able to provide accurate range information.
This module develops a basic LIDAR sensor model and explores how
LIDAR data can be used to produce point clouds (collections of 3D points in a specific reference frame).
Learners will examine ways in which two LIDAR point clouds can be registered,
or aligned, in order to determine how the pose of the vehicle has changed with time (i.e.,
the transformation between two local reference frames).
Module 5: Putting It together - An Autonomous Vehicle State Estimator
This module combines materials from Modules 1-4 together, with the goal of developing a full vehicle state estimator.
Learners will build, using data from the CARLA simulator,
an error-state extended Kalman filter-based estimator that incorporates
GPS, IMU, and LIDAR measurements to determine the vehicle position and orientation on the road at a high update rate.
There will be an opportunity to observe what happens to the quality of the state estimate when one
or more of the sensors either 'drop out' or are disabled.

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
亚洲欧美在线aaa| 国产精品一区二区a| 亚洲无亚洲人成网站77777 | 欧美影片第一页| 99精品视频免费全部在线| 国产一区二区精品在线观看| 欧美精品乱人伦久久久久久| 久久久国产一区二区三区| 亚洲夜晚福利在线观看| 日韩特黄影片| 亚洲肉体裸体xxxx137| 一区二区三区在线观看国产| 国产乱肥老妇国产一区二| 欧美日韩一区二区三区在线看| 美脚丝袜一区二区三区在线观看 | 9l国产精品久久久久麻豆| 亚洲国产成人久久| 在线观看成人网| 亚洲成色www久久网站| 红桃视频成人| 亚洲第一福利在线观看| 在线观看欧美视频| 亚洲高清免费在线| 亚洲精美视频| 一区二区三区日韩精品| 亚洲深夜激情| 欧美一区2区三区4区公司二百| 亚洲女人av| 久久er99精品| 久久中文精品| 欧美日韩国产精品一卡| 亚洲欧洲精品一区| 99国产精品| 一区二区三区高清| 欧美亚洲日本国产| 久久久久久久一区二区| 久久一区精品| 欧美女主播在线| 国产精品二区三区四区| 国产女精品视频网站免费 | 国产精品美腿一区在线看 | 国产精品自拍小视频| 国内外成人在线视频| 亚洲第一区在线观看| 99re在线精品| 久久精品日韩欧美| 欧美国产综合视频| 国产精品日日摸夜夜摸av| 狠狠v欧美v日韩v亚洲ⅴ| 亚洲黄页视频免费观看| 亚洲无限av看| 老鸭窝毛片一区二区三区| 欧美日韩的一区二区| 国产亚洲精久久久久久| 亚洲伦理在线免费看| 亚洲免费视频中文字幕| 久久蜜桃香蕉精品一区二区三区| 欧美国产精品中文字幕| 国产精品一区二区三区久久| 亚洲成人在线| 欧美亚洲一区| 欧美精品一区在线发布| 国内外成人在线| 亚洲一区二区三区精品在线观看| 久久久久综合网| 国产精品狼人久久影院观看方式| 亚洲大片av| 欧美一区二区精品在线| 欧美日韩三级| 亚洲国内精品在线| 久久五月天婷婷| 国产日韩在线亚洲字幕中文| 99re66热这里只有精品3直播 | 国产视频在线一区二区| 亚洲一级黄色片| 欧美麻豆久久久久久中文| 伊人成人在线| 久久精品毛片| 国产一区二区三区在线观看免费视频| 一区二区三区精品国产| 欧美高清视频一区二区三区在线观看| 狠狠色噜噜狠狠狠狠色吗综合| 亚洲欧美电影在线观看| 欧美午夜美女看片| 一个色综合导航| 欧美日韩一区二区三区四区五区| 亚洲国产精品视频一区| 鲁大师影院一区二区三区| 国产在线麻豆精品观看| 久久精品色图| 国产一区免费视频| 久久久精品性| 亚洲第一综合天堂另类专| 久久久99国产精品免费| 好看的日韩视频| 久久亚洲一区二区| 麻豆成人在线播放| 伊人夜夜躁av伊人久久| 快she精品国产999| 亚洲精品日韩在线观看| 欧美精品v日韩精品v国产精品| 亚洲精品国产精品国自产在线 | 亚洲激情社区| 欧美片第一页| 亚洲已满18点击进入久久| 国产精品中文字幕欧美| 欧美一区二区在线看| 狠狠久久亚洲欧美专区| 久久综合九色九九| 亚洲精品在线免费| 国产精品magnet| 欧美在线一级va免费观看| 伊人天天综合| 欧美日韩免费高清一区色橹橹| 国产精品99久久久久久www| 国产欧美一区二区视频| 久久综合网hezyo| av成人国产| 国产亚洲视频在线| 欧美激情在线| 亚洲欧美精品在线观看| 加勒比av一区二区| 欧美日韩黄色大片| 欧美自拍丝袜亚洲| 亚洲理伦在线| 国产综合视频| 欧美日韩小视频| 欧美在线免费播放| 亚洲最黄网站| 亚洲大胆女人| 国产精品外国| 欧美日本视频在线| 久久香蕉国产线看观看av| 在线视频亚洲| 最近看过的日韩成人| 国产日韩成人精品| 欧美日韩一区二区在线播放| 久久riav二区三区| 亚洲一区区二区| 亚洲伦理一区| 亚洲国产综合在线看不卡| 国产麻豆日韩欧美久久| 欧美日韩国产精品成人| 久久躁狠狠躁夜夜爽| 午夜激情一区| 亚洲天堂网在线观看| 亚洲激情另类| 亚洲国产高清aⅴ视频| 国内精品久久久久久影视8| 欧美日韩视频第一区| 欧美高清视频www夜色资源网| 久久激情视频免费观看| 中文久久乱码一区二区| 亚洲精品国产精品久久清纯直播| 狠狠爱www人成狠狠爱综合网| 国产精品午夜av在线| 国产精品国产三级国产普通话三级| 免费在线成人av| 美女精品在线观看| 免费亚洲婷婷| 欧美www视频| 欧美黄色aa电影| 欧美精品一区二区三区很污很色的| 久久人人爽人人爽| 每日更新成人在线视频| 久久九九热免费视频| 久久狠狠久久综合桃花| 久久精品青青大伊人av| 久久精品99久久香蕉国产色戒| 亚洲综合欧美| 久久xxxx精品视频| 久久婷婷亚洲| 亚洲精品一区二区在线观看| 亚洲激情电影在线| 亚洲美女中文字幕| 亚洲制服av| 欧美在线观看你懂的| 久久精品在线播放| 蜜臀91精品一区二区三区| 欧美成年人视频网站| 欧美日韩一区国产| 国产精品一级| 亚洲第一伊人| 中文一区字幕| 久久大逼视频| 欧美激情一区二区三区四区| 欧美人牲a欧美精品| 国产精品无码永久免费888| 国产亚洲va综合人人澡精品| 伊人久久大香线蕉av超碰演员| 亚洲欧洲精品一区| 亚洲一区二区久久| 久久亚洲美女| 欧美日韩在线影院| 国产一区二区三区黄视频| 亚洲精品国产精品国自产观看| 亚洲主播在线观看| 欧美阿v一级看视频| 国产精品久久久久影院色老大 | 巨乳诱惑日韩免费av|