国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:Understanding Deep Neural Networks培訓
4401 人關注
(78637/99817)
課程大綱:

          Understanding Deep Neural Networks培訓

 

 

 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics
Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano
Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics
Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics
Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron
Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines
Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks
Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks
Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
国语自产精品视频在线看8查询8| 国产精品99久久久久久久久| 欧美人牲a欧美精品| 亚洲免费影院| 亚洲精选大片| 亚洲国产一区二区三区在线播| 国产精品麻豆成人av电影艾秋| 欧美电影在线| 六月婷婷久久| 久久精品免费看| 欧美亚洲网站| 亚洲欧美另类中文字幕| 一本久久综合亚洲鲁鲁五月天| 久久精品一区二区三区中文字幕| 在线综合亚洲| 亚洲手机视频| 亚洲无人区一区| 亚洲综合第一页| 亚洲香蕉网站| 亚洲综合色激情五月| 亚洲自拍另类| 亚洲欧美一区二区三区久久| 亚洲无人区一区| 亚洲免费视频一区二区| 亚洲欧美日韩在线高清直播| 亚洲一区三区电影在线观看| 亚洲一区综合| 欧美中在线观看| 久久久7777| 免费日韩av电影| 欧美—级a级欧美特级ar全黄| 免播放器亚洲一区| 欧美激情一二区| 欧美日韩视频一区二区三区| 国产精品wwwwww| 国产一区二区三区在线免费观看| 国产在线观看精品一区二区三区 | 国产欧美日本| 激情综合电影网| 亚洲人体大胆视频| 亚洲一区二区三区久久| 午夜一区二区三视频在线观看 | 国产九九视频一区二区三区| 韩日精品中文字幕| 亚洲美女视频网| 亚洲午夜一区二区| 久久久久免费| 欧美三级电影大全| 狠狠干成人综合网| 一本久道久久综合狠狠爱| 午夜视频精品| 欧美—级在线免费片| 国产欧美视频一区二区三区| 亚洲二区视频| 欧美一区三区二区在线观看| 欧美jizz19性欧美| 国产日韩欧美不卡| 在线视频一区二区| 蜜桃精品久久久久久久免费影院| 欧美日韩国产精品一区二区亚洲| 国产欧美精品| 亚洲视频欧美视频| 免费欧美日韩| 国产亚洲精品综合一区91| 亚洲精品国产拍免费91在线| 欧美一级在线播放| 欧美调教vk| 日韩视频在线观看免费| 久久久久欧美| 国产午夜精品久久| 亚洲一区二区三区精品在线观看 | 亚洲福利视频网站| 亚洲女同在线| 欧美手机在线| 日韩一二三区视频| 欧美高清影院| 亚洲高清激情| 91久久在线播放| 久久久久久久久一区二区| 国产精品美女久久久久久2018| 亚洲精品美女| 欧美国产欧美亚洲国产日韩mv天天看完整 | 亚洲人成网站影音先锋播放| 久久精品99国产精品日本| 国产精品嫩草99a| 亚洲欧美一区二区激情| 国产精品美女视频网站| 亚洲视频在线观看三级| 欧美日韩在线三区| 一本色道久久综合亚洲91| 欧美精品一区二区久久婷婷| 亚洲黄色大片| 欧美激情第1页| 99re66热这里只有精品3直播 | 亚洲区中文字幕| 欧美精品日韩精品| 日韩一级片网址| 欧美日韩亚洲综合一区| 中文国产成人精品| 国产精品夜夜嗨| 久久www免费人成看片高清| 国产日韩欧美a| 久久人人看视频| 亚洲日本免费| 国产精品va| 久久精品av麻豆的观看方式 | 精品51国产黑色丝袜高跟鞋| 久久综合久久综合这里只有精品 | 亚洲激情av| 国产精品video| 久久gogo国模裸体人体| 亚洲国产精品一区二区第四页av | 亚洲综合色丁香婷婷六月图片| 国产毛片久久| 久热精品在线视频| 一区二区三区色| 亚洲精品日韩精品| 欧美日韩精品欧美日韩精品| 亚洲一二三级电影| 国内在线观看一区二区三区| 你懂的视频一区二区| 亚洲桃花岛网站| 黄色综合网站| 国产精品国产a| 麻豆av一区二区三区久久| 99国产精品久久久久久久久久| 国产精品尤物| 欧美精品九九| 久久久久国产精品一区三寸| 亚洲理伦电影| 狠狠色丁香婷婷综合| 欧美日韩在线播放三区四区| 久久精品国产亚洲a| aa日韩免费精品视频一| 黄色一区二区在线| 久久午夜av| 中文av一区二区| 亚洲第一中文字幕在线观看| 国产精品久久久久999| 美女脱光内衣内裤视频久久网站| 亚洲免费网址| 99视频精品| 亚洲国产裸拍裸体视频在线观看乱了| 欧美视频导航| 欧美精品久久久久久久| 久久久久久夜| 欧美一区二区在线视频| 亚洲一区二区高清视频| 亚洲人成人一区二区在线观看| 韩日欧美一区二区三区| 国产精品揄拍500视频| 欧美日韩亚洲一区二区| 欧美激情亚洲国产| 欧美99久久| 免费久久久一本精品久久区| 久久久www成人免费无遮挡大片| 亚洲综合精品四区| 亚洲视频综合| 亚洲一区免费在线观看| 亚洲视频欧美视频| 亚洲深夜福利网站| 亚洲图色在线| 亚洲一区国产| 亚洲欧美激情视频| 亚洲一区在线免费观看| 亚洲深夜激情| 亚洲在线视频观看| 亚洲欧美福利一区二区| 亚洲综合日韩| 欧美呦呦网站| 可以看av的网站久久看| 久久精品成人欧美大片古装| 欧美在线free| 久久久亚洲高清| 母乳一区在线观看| 欧美麻豆久久久久久中文| 欧美日韩免费观看中文| 欧美性猛交xxxx乱大交退制版| 国产精品国内视频| 国产精品一区在线观看你懂的| 国产精品私拍pans大尺度在线| 国产精品亚洲аv天堂网| 国产日韩在线不卡| 1204国产成人精品视频| 亚洲精品九九| 亚洲欧美激情视频| 久久久久国内| 欧美日韩国产精品一卡| 国产精品亚洲产品| 在线高清一区| 一本色道久久综合亚洲精品婷婷| 亚洲一区二区三区高清| 欧美一区二区三区四区视频| 久久久国产精彩视频美女艺术照福利| 久久男人av资源网站| 欧美精品大片| 国产欧美日韩一区| 亚洲欧洲日韩综合二区| 亚洲欧美视频在线观看| 美女精品在线观看|