国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:Understanding Deep Neural Networks培訓
4401 人關注
(78637/99817)
課程大綱:

          Understanding Deep Neural Networks培訓

 

 

 

Part 1 – Deep Learning and DNN Concepts

Introduction AI, Machine Learning & Deep Learning

History, basic concepts and usual applications of artificial intelligence far Of the fantasies carried by this domain

Collective Intelligence: aggregating knowledge shared by many virtual agents

Genetic algorithms: to evolve a population of virtual agents by selection

Usual Learning Machine: definition.

Types of tasks: supervised learning, unsupervised learning, reinforcement learning

Types of actions: classification, regression, clustering, density estimation, reduction of dimensionality

Examples of Machine Learning algorithms: Linear regression, Naive Bayes, Random Tree

Machine learning VS Deep Learning: problems on which Machine Learning remains Today the state of the art (Random Forests & XGBoosts)

Basic Concepts of a Neural Network (Application: multi-layer perceptron)

Reminder of mathematical bases.

Definition of a network of neurons: classical architecture, activation and

Weighting of previous activations, depth of a network

Definition of the learning of a network of neurons: functions of cost, back-propagation, Stochastic gradient descent, maximum likelihood.

Modeling of a neural network: modeling input and output data according to The type of problem (regression, classification ...). Curse of dimensionality.

Distinction between Multi-feature data and signal. Choice of a cost function according to the data.

Approximation of a function by a network of neurons: presentation and examples

Approximation of a distribution by a network of neurons: presentation and examples

Data Augmentation: how to balance a dataset

Generalization of the results of a network of neurons.

Initialization and regularization of a neural network: L1 / L2 regularization, Batch Normalization

Optimization and convergence algorithms

Standard ML / DL Tools

A simple presentation with advantages, disadvantages, position in the ecosystem and use is planned.

Data management tools: Apache Spark, Apache Hadoop Tools

Machine Learning: Numpy, Scipy, Sci-kit

DL high level frameworks: PyTorch, Keras, Lasagne

Low level DL frameworks: Theano, Torch, Caffe, Tensorflow

Convolutional Neural Networks (CNN).

Presentation of the CNNs: fundamental principles and applications

Basic operation of a CNN: convolutional layer, use of a kernel,

Padding & stride, feature map generation, pooling layers. Extensions 1D, 2D and 3D.

Presentation of the different CNN architectures that brought the state of the art in classification

Images: LeNet, VGG Networks, Network in Network, Inception, Resnet. Presentation of Innovations brought about by each architecture and their more global applications (Convolution 1x1 or residual connections)

Use of an attention model.

Application to a common classification case (text or image)

CNNs for generation: super-resolution, pixel-to-pixel segmentation. Presentation of

Main strategies for increasing feature maps for image generation.

Recurrent Neural Networks (RNN).

Presentation of RNNs: fundamental principles and applications.

Basic operation of the RNN: hidden activation, back propagation through time, Unfolded version.

Evolutions towards the Gated Recurrent Units (GRUs) and LSTM (Long Short Term Memory).

Presentation of the different states and the evolutions brought by these architectures

Convergence and vanising gradient problems

Classical architectures: Prediction of a temporal series, classification ...

RNN Encoder Decoder type architecture. Use of an attention model.

NLP applications: word / character encoding, translation.

Video Applications: prediction of the next generated image of a video sequence.

Generational models: Variational AutoEncoder (VAE) and Generative Adversarial Networks (GAN).

Presentation of the generational models, link with the CNNs

Auto-encoder: reduction of dimensionality and limited generation

Variational Auto-encoder: generational model and approximation of the distribution of a given. Definition and use of latent space. Reparameterization trick. Applications and Limits observed

Generative Adversarial Networks: Fundamentals.

Dual Network Architecture (Generator and discriminator) with alternate learning, cost functions available.

Convergence of a GAN and difficulties encountered.

Improved convergence: Wasserstein GAN, Began. Earth Moving Distance.

Applications for the generation of images or photographs, text generation, super-resolution.

Deep Reinforcement Learning.

Presentation of reinforcement learning: control of an agent in a defined environment

By a state and possible actions

Use of a neural network to approximate the state function

Deep Q Learning: experience replay, and application to the control of a video game.

Optimization of learning policy. On-policy && off-policy. Actor critic architecture. A3C.

Applications: control of a single video game or a digital system.

Part 2 – Theano for Deep Learning

Theano Basics
Introduction

Installation and Configuration

Theano Functions

inputs, outputs, updates, givens

Training and Optimization of a neural network using Theano
Neural Network Modeling

Logistic Regression

Hidden Layers

Training a network

Computing and Classification

Optimization

Log Loss

Testing the model

Part 3 – DNN using Tensorflow

TensorFlow Basics
Creation, Initializing, Saving, and Restoring TensorFlow variables

Feeding, Reading and Preloading TensorFlow Data

How to use TensorFlow infrastructure to train models at scale

Visualizing and Evaluating models with TensorBoard

TensorFlow Mechanics
Prepare the Data

Download

Inputs and Placeholders

Build the GraphS

Inference

Loss

Training

Train the Model

The Graph

The Session

Train Loop

Evaluate the Model

Build the Eval Graph

Eval Output

The Perceptron
Activation functions

The perceptron learning algorithm

Binary classification with the perceptron

Document classification with the perceptron

Limitations of the perceptron

From the Perceptron to Support Vector Machines
Kernels and the kernel trick

Maximum margin classification and support vectors

Artificial Neural Networks
Nonlinear decision boundaries

Feedforward and feedback artificial neural networks

Multilayer perceptrons

Minimizing the cost function

Forward propagation

Back propagation

Improving the way neural networks learn

Convolutional Neural Networks
Goals

Model Architecture

Principles

Code Organization

Launching and Training the Model

Evaluating a Model

Basic Introductions to be given to the below modules(Brief Introduction to be provided based on time availability):

Tensorflow - Advanced Usage

Threading and Queues

Distributed TensorFlow

Writing Documentation and Sharing your Model

Customizing Data Readers

Manipulating TensorFlow Model Files

TensorFlow Serving

Introduction

Basic Serving Tutorial

Advanced Serving Tutorial

Serving Inception Model Tutorial

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
久久精品久久99精品久久| 国产精品视频免费观看www| 一区二区电影免费在线观看| 国产精品成人一区二区艾草| 免费试看一区| 久久久亚洲精品一区二区三区| 在线视频欧美日韩| 亚洲人成亚洲人成在线观看| 国产人久久人人人人爽| 国产精品地址| 欧美日韩一本到| 欧美精品videossex性护士| 久久久久国产免费免费| 香蕉久久夜色| 欧美中文字幕在线| 欧美在线免费看| 校园激情久久| 久久福利精品| 久久久久久久久久久久久女国产乱| 亚洲在线视频| 午夜在线视频一区二区区别| 亚洲免费在线观看| 午夜视频在线观看一区二区三区| av成人免费| 亚洲综合另类| 欧美一区二区大片| 久久成人久久爱| 久久免费精品视频| 欧美sm重口味系列视频在线观看| 欧美成人精品1314www| 欧美激情视频在线播放| 欧美日韩一区自拍| 国产精品一区二区久激情瑜伽| 国产三级欧美三级日产三级99| 国产欧美一区二区三区视频| 国产一区二区三区av电影| 黄色成人在线网址| 亚洲日本一区二区三区| 亚洲丝袜av一区| 久久精品噜噜噜成人av农村| 久久手机免费观看| 欧美精品一区二区三区在线看午夜| 欧美日韩综合视频| 国产亚洲欧美激情| 亚洲卡通欧美制服中文| 亚洲欧美日韩爽爽影院| 久久久99国产精品免费| 欧美精品九九99久久| 国产精品一区二区女厕厕| 在线观看欧美黄色| 在线综合亚洲| 美女国产精品| 国产精品美女一区二区在线观看| 韩国av一区二区三区在线观看| 亚洲精品一级| 久久精品国产精品亚洲| 欧美日韩国产精品自在自线| 国产亚洲精品成人av久久ww| 99国内精品久久| 免费不卡在线视频| 国产精品久久久久免费a∨大胸 | 久久在线91| 国产精品久久久久久久久借妻| 在线免费观看一区二区三区| 亚洲视频在线视频| 欧美不卡视频一区发布| 国产日韩亚洲欧美综合| 99这里只有久久精品视频| 久久久蜜桃一区二区人| 国产精品视频网| aa级大片欧美| 欧美精品精品一区| 亚洲第一精品久久忘忧草社区| 亚洲一区二区三区精品在线| 欧美激情一区二区| 亚洲福利在线观看| 久久久久一区| 国产一区91精品张津瑜| 亚洲欧美福利一区二区| 欧美日韩日日夜夜| 99国产精品久久久久久久| 久久综合久久综合久久| 国内精品久久久久久久影视蜜臀| 亚洲一区视频在线观看视频| 欧美日韩天天操| 日韩小视频在线观看| 欧美精品18videos性欧美| 亚洲高清资源综合久久精品| 久久亚洲二区| 一区二区在线不卡| 久久婷婷成人综合色| 在线播放不卡| 美女啪啪无遮挡免费久久网站| 激情久久久久久久| 久久亚洲春色中文字幕| 在线电影一区| 欧美国产日韩二区| 99在线|亚洲一区二区| 欧美人与性禽动交情品| 99re在线精品| 国产精品久久久久久久免费软件| 亚洲在线视频网站| 国产精品青草久久久久福利99| 亚洲影院在线观看| 国产免费成人av| 久久久成人网| 亚洲日本视频| 国产精品久久久久aaaa| 欧美有码视频| 最新成人av网站| 欧美日韩在线不卡| 欧美一区二区网站| 欲色影视综合吧| 欧美日韩国产黄| 欧美一区影院| 亚洲精品视频在线| 国产麻豆成人精品| 免费久久久一本精品久久区| 亚洲美女一区| 国产欧美一区二区三区国产幕精品 | 久久成人人人人精品欧| 亚洲第一精品影视| 欧美日韩一区二区在线播放| 欧美在线观看天堂一区二区三区| 136国产福利精品导航| 欧美日韩精选| 久热精品视频在线| 亚洲午夜av| 亚洲韩国日本中文字幕| 国产精品久久久久免费a∨| 久久综合色天天久久综合图片| 一二三区精品| 亚洲高清视频一区二区| 国产女人aaa级久久久级| 麻豆精品在线视频| 亚洲欧美一级二级三级| 亚洲欧洲日产国产网站| 国产一区二区三区四区hd| 欧美日韩在线电影| 免费在线看成人av| 久久久国产精品一区二区中文 | 午夜亚洲福利| 在线天堂一区av电影| 亚洲第一精品夜夜躁人人爽| 国产精品综合不卡av| 欧美日韩亚洲在线| 欧美国产激情二区三区| 欧美在线观看天堂一区二区三区| aa日韩免费精品视频一| 亚洲人成网站精品片在线观看| 黄色免费成人| 国内伊人久久久久久网站视频| 国产精品人人爽人人做我的可爱| 亚洲丰满在线| 亚洲综合国产| 日韩视频―中文字幕| 亚洲国产中文字幕在线观看| 国产日韩一区二区三区在线| 国产精品伦子伦免费视频| 欧美日韩八区| 欧美日韩亚洲一区在线观看| 欧美精品v日韩精品v韩国精品v | 好看的日韩视频| 国产一区二区久久久| 国产视频亚洲| 国内精品亚洲| 影音先锋成人资源站| 在线观看中文字幕亚洲| 亚洲东热激情| 亚洲精品乱码久久久久久按摩观| 亚洲狠狠丁香婷婷综合久久久| 亚洲高清在线| 99日韩精品| 亚洲女性喷水在线观看一区| 亚洲欧美在线一区二区| 久久av在线| 麻豆精品在线视频| 欧美激情在线观看| 欧美亚韩一区| 亚洲欧美视频一区| 国产精品乱码一区二三区小蝌蚪 | 国产日韩一级二级三级| 国产色婷婷国产综合在线理论片a| 国产三区精品| 亚洲高清不卡| 日韩小视频在线观看专区| 亚洲一二三区在线| 欧美在线视频二区| 免费日韩一区二区| 欧美色大人视频| 国产一区二区三区四区三区四| 亚洲国产精品久久久久婷婷884| 一区二区三区你懂的| 久久激五月天综合精品| 欧美成人伊人久久综合网| 欧美性久久久| 一区二区三区在线高清| 亚洲图片自拍偷拍| 麻豆成人综合网| 国产精品日韩一区二区三区|