国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区

課程目錄:為電信服務(wù)供應(yīng)商的智能大數(shù)據(jù)信息業(yè)務(wù)培訓(xùn)
4401 人關(guān)注
(78637/99817)
課程大綱:

         為電信服務(wù)供應(yīng)商的智能大數(shù)據(jù)信息業(yè)務(wù)培訓(xùn)

 

 

 

Breakdown of topics on daily basis: (Each session is 2 hours)

Day-1: Session -1: Business Overview of Why Big Data Business Intelligence in Telco.
Case Studies from T-Mobile, Verizon etc.
Big Data adaptation rate in North American Telco & and how they are aligning their future business model and operation around Big Data BI
Broad Scale Application Area
Network and Service management
Customer Churn Management
Data Integration & Dashboard visualization
Fraud management
Business Rule generation
Customer profiling
Localized Ad pushing
Day-1: Session-2 : Introduction of Big Data-1
Main characteristics of Big Data-volume, variety, velocity and veracity. MPP architecture for volume.
Data Warehouses – static schema, slowly evolving dataset
MPP Databases like Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
Day-1 : Session -3 : Introduction to Big Data-2
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issue in Big Data
RDBMS – static structure/schema, doesn’t promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Day-1 : Session-4 : Big Data Introduction-3 : Hadoop
When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – tough to do with traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS
MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
Day-2: Session-1.1: Spark : In Memory distributed database
What is “In memory” processing?
Spark SQL
Spark SDK
Spark API
RDD
Spark Lib
Hanna
How to migrate an existing Hadoop system to Spark
Day-2 Session -1.2: Storm -Real time processing in Big Data
Streams
Sprouts
Bolts
Topologies
Day-2: Session-2: Big Data Management System
Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Evolving Big Data platform tools for tracking
ETL layer application issues
Day-2: Session-3: Predictive analytics in Business Intelligence -1: Fundamental Techniques & Machine learning based BI :
Introduction to Machine learning
Learning classification techniques
Bayesian Prediction-preparing training file
Markov random field
Supervised and unsupervised learning
Feature extraction
Support Vector Machine
Neural Network
Reinforcement learning
Big Data large variable problem -Random forest (RF)
Representation learning
Deep learning
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
LDA and topic modeling
Agile learning
Agent based learning- Example from Telco operation
Distributed learning –Example from Telco operation
Introduction to Open source Tools for predictive analytics : R, Rapidminer, Mahut
More scalable Analytic-Apache Hama, Spark and CMU Graph lab
Day-2: Session-4 Predictive analytics eco-system-2: Common predictive analytic problems in Telecom
Insight analytic
Visualization analytic
Structured predictive analytic
Unstructured predictive analytic
Customer profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery –failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytic
Network analytic
Text Analytics
Technology assisted review
Fraud analytic
Real Time Analytic
Day-3 : Sesion-1 : Network Operation analytic- root cause analysis of network failures, service interruption from meta data, IPDR and CRM:
CPU Usage
Memory Usage
QoS Queue Usage
Device Temperature
Interface Error
IoS versions
Routing Events
Latency variations
Syslog analytics
Packet Loss
Load simulation
Topology inference
Performance Threshold
Device Traps
IPDR ( IP detailed record) collection and processing
Use of IPDR data for Subscriber Bandwidth consumption, Network interface utilization, modem status and diagnostic
HFC information
Day-3: Session-2: Tools for Network service failure analysis:
Network Summary Dashboard: monitor overall network deployments and track your organization's key performance indicators
Peak Period Analysis Dashboard: understand the application and subscriber trends driving peak utilization, with location-specific granularity
Routing Efficiency Dashboard: control network costs and build business cases for capital projects with a complete understanding of interconnect and transit relationships
Real-Time Entertainment Dashboard: access metrics that matter, including video views, duration, and video quality of experience (QoE)
IPv6 Transition Dashboard: investigate the ongoing adoption of IPv6 on your network and gain insight into the applications and devices driving trends
Case-Study-1: The Alcatel-Lucent Big Network Analytics (BNA) Data Miner
Multi-dimensional mobile intelligence (m.IQ6)
Day-3 : Session 3: Big Data BI for Marketing/Sales –Understanding sales/marketing from Sales data: ( All of them will be shown with a live predictive analytic demo )
To identify highest velocity clients
To identify clients for a given products
To identify right set of products for a client ( Recommendation Engine)
Market segmentation technique
Cross-Sale and upsale technique
Client segmentation technique
Sales revenue forecasting technique
Day-3: Session 4: BI needed for Telco CFO office:
Overview of Business Analytics works needed in a CFO office
Risk analysis on new investment
Revenue, profit forecasting
New client acquisition forecasting
Loss forecasting
Fraud analytic on finances ( details next session )
Day-4 : Session-1: Fraud prevention BI from Big Data in Telco-Fraud analytic:
Bandwidth leakage / Bandwidth fraud
Vendor fraud/over charging for projects
Customer refund/claims frauds
Travel reimbursement frauds
Day-4 : Session-2: From Churning Prediction to Churn Prevention:
3 Types of Churn : Active/Deliberate , Rotational/Incidental, Passive Involuntary
3 classification of churned customers: Total, Hidden, Partial
Understanding CRM variables for churn
Customer behavior data collection
Customer perception data collection
Customer demographics data collection
Cleaning CRM Data
Unstructured CRM data ( customer call, tickets, emails) and their conversion to structured data for Churn analysis
Social Media CRM-new way to extract customer satisfaction index
Case Study-1 : T-Mobile USA: Churn Reduction by 50%
Day-4 : Session-3: How to use predictive analysis for root cause analysis of customer dis-satisfaction :
Case Study -1 : Linking dissatisfaction to issues – Accounting, Engineering failures like service interruption, poor bandwidth service
Case Study-2: Big Data QA dashboard to track customer satisfaction index from various parameters such as call escalations, criticality of issues, pending service interruption events etc.
Day-4: Session-4: Big Data Dashboard for quick accessibility of diverse data and display :
Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based Advertisement
Tracking system and management
Day-5 : Session-1: How to justify Big Data BI implementation within an organization:
Defining ROI for Big Data implementation
Case studies for saving Analyst Time for collection and preparation of Data –increase in productivity gain
Case studies of revenue gain from customer churn
Revenue gain from location based and other targeted Ad
An integrated spreadsheet approach to calculate approx. expense vs. Revenue gain/savings from Big Data implementation.
Day-5 : Session-2: Step by Step procedure to replace legacy data system to Big Data System:
Understanding practical Big Data Migration Roadmap
What are the important information needed before architecting a Big Data implementation
What are the different ways of calculating volume, velocity, variety and veracity of data
How to estimate data growth
Case studies in 2 Telco
Day-5: Session 3 & 4: Review of Big Data Vendors and review of their products. Q/A session:
AccentureAlcatel-Lucent
Amazon –A9
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
Huawei
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
VMware (Part of EMC)

国产乱码精品_欧美私模裸体表演在线观看_久久精品国产久精国产_美女亚洲一区
国产精品女主播一区二区三区| 日韩香蕉视频| 欧美一区在线直播| 亚洲人妖在线| 国产有码在线一区二区视频| 欧美视频二区36p| 久久影音先锋| 久久成人国产精品| 欧美一区二区日韩一区二区| 亚洲区第一页| 亚洲国产婷婷香蕉久久久久久| 国产香蕉久久精品综合网| 欧美午夜不卡在线观看免费| 欧美高清视频在线| 欧美a级片一区| 老司机午夜精品| 久久不射电影网| 欧美影院精品一区| 欧美怡红院视频| 欧美在线一二三区| 久久久91精品国产| 久久久久国产一区二区| 久久手机精品视频| 卡通动漫国产精品| 另类国产ts人妖高潮视频| 久久手机免费观看| 欧美大片免费观看在线观看网站推荐| 久久精品国产亚洲一区二区三区| 久久福利毛片| 久久中文字幕导航| 欧美gay视频| 欧美电影在线| 欧美少妇一区| 国产日韩一区二区三区| 国产日韩精品一区二区| 伊人成人开心激情综合网| 在线观看日韩av先锋影音电影院| 亚洲国产婷婷香蕉久久久久久99| 亚洲精品综合| 亚洲欧美国产77777| 亚洲图片你懂的| 小嫩嫩精品导航| 久久另类ts人妖一区二区| 免费一级欧美片在线播放| 欧美日韩免费看| 国产亚洲欧美另类中文| 最近看过的日韩成人| 中文国产成人精品久久一| 欧美制服丝袜第一页| 欧美freesex8一10精品| 久久久综合网| 欧美三级不卡| 伊人伊人伊人久久| 亚洲天堂第二页| 老司机午夜精品视频| 欧美天堂亚洲电影院在线观看| 国产亚洲一二三区| 一区二区av在线| 久久精品理论片| 欧美色网在线| 亚洲激情亚洲| 久久精品毛片| 国产精品欧美日韩久久| 91久久久久久国产精品| 久久精品九九| 国产精品日韩一区二区| 亚洲精品自在久久| 久久精品国产亚洲一区二区| 国产精品豆花视频| 91久久精品日日躁夜夜躁国产| 欧美在线一二三四区| 国产精品r级在线| 亚洲精品日韩一| 久久久精彩视频| 国产欧美一区二区色老头| 一区二区三区久久网| 欧美成人久久| 在线不卡免费欧美| 久久经典综合| 国产一级一区二区| 欧美亚洲视频一区二区| 国产精品高潮呻吟| 艳女tv在线观看国产一区| 欧美激情性爽国产精品17p| 樱花yy私人影院亚洲| 久久精品色图| 好吊成人免视频| 久久九九热re6这里有精品| 国产日韩一区二区三区在线| 亚洲欧美日韩中文视频| 国产精品丝袜xxxxxxx| 亚洲一区国产视频| 国产精品丝袜久久久久久app| 亚洲天堂久久| 国产精品日韩精品欧美精品| 亚洲综合电影一区二区三区| 国产精品久久久一区麻豆最新章节| 亚洲无线一线二线三线区别av| 欧美日韩国产精品一区| 一本久久综合亚洲鲁鲁| 欧美视频亚洲视频| 性欧美长视频| 韩日欧美一区| 欧美成人午夜| 亚洲午夜久久久| 国产一区二区三区电影在线观看| 久久国产66| 亚洲国产一成人久久精品| 欧美精品日韩三级| 亚洲一区二区在线播放| 国产日韩欧美综合精品| 久久久综合网站| 99热在这里有精品免费| 国产精品一二三| 在线综合亚洲欧美在线视频| 久热国产精品| 亚洲视频在线看| 国内在线观看一区二区三区 | 久久久久久综合网天天| 精品99一区二区三区| 欧美理论在线播放| 亚洲欧美在线播放| 亚洲第一中文字幕| 国产精品免费观看在线| 久久婷婷人人澡人人喊人人爽 | 欧美三区不卡| 久久久久久电影| 亚洲一区二区黄色| 在线观看成人网| 国产精品网站在线观看| 欧美国产日韩精品免费观看| 午夜欧美不卡精品aaaaa| 亚洲国产高清在线| 国产精品一区二区久久| 欧美精品国产精品日韩精品| 久久久99久久精品女同性| 99国产一区| 亚洲韩国一区二区三区| 国产一区二区三区视频在线观看| 欧美精品一区二| 久久亚洲精品一区二区| 午夜精品久久久久久久久| 日韩视频在线播放| 亚洲福利视频在线| 国产午夜精品全部视频在线播放| 欧美日韩福利视频| 欧美—级a级欧美特级ar全黄| 久久精品人人| 亚洲欧美在线播放| 一区二区三区视频在线| 亚洲欧洲一区二区天堂久久 | 美女性感视频久久久| 午夜在线观看免费一区| 国产精品99久久久久久宅男| 亚洲毛片av在线| 亚洲国产一区二区三区高清| 国内精品久久久久久久果冻传媒| 国产精品夫妻自拍| 国产精品黄页免费高清在线观看| 欧美精品在线视频观看| 欧美韩日一区| 欧美激情欧美狂野欧美精品| 免费在线成人| 欧美成人有码| 欧美激情综合在线| 欧美日本国产在线| 欧美日产一区二区三区在线观看| 欧美丰满少妇xxxbbb| 免费看的黄色欧美网站| 欧美国产三区| 欧美日韩国产首页| 国产精品国产三级国产专区53| 国产精品v欧美精品v日韩精品| 国产精品高潮视频| 国产欧美日韩亚洲| 国产午夜久久久久| 尤物九九久久国产精品的分类| 亚洲高清免费在线| 亚洲另类在线一区| 亚洲午夜视频| 久久精品国产99| 麻豆成人精品| 欧美美女福利视频| 国产精品呻吟| 国内精品模特av私拍在线观看| 在线欧美日韩国产| 在线视频一区二区| 欧美一区久久| 欧美电影在线播放| 国产精品红桃| 在线观看中文字幕亚洲| 日韩视频在线一区二区| 欧美亚洲在线视频| 美女国产一区| 国产精品美女久久久| 在线免费精品视频| 亚洲欧美国产日韩天堂区| 久久久久综合网| 国产精品久久久免费| 亚洲国产成人av好男人在线观看|